

v

Secure Data Aggregation Process using Memetic Algorithm in IoT Enabled

Wireless Sensor Networks

Dr.D.Nethra Pingala Suthishnia and K.S.Senthil Kumarb
aAssistant Professor, Department of Information Technology,

Avinashilingam Institute for Home Science and Higher Education for Women,

Coimbatore, India.

nethra_it@avinuty.ac.in
bAssistant Professor, PG & Research Department of Computer Science

Hindusthan College of Arts & Science

Coimbatore, India

senth4u4m@gmail.com

Dr.D.Nethra Pingala Suthishni, working as Assistant Professor in the Department of

Information Technology, Avinashilingam Institute for Home Science and Higher

Education for Women, Coimbatore, India with a teaching experience of around 7 years.

She has completed her Doctorate in Computer Science in March 2021and her research

areas include network security and soft computing.

K.S.Senthil Kumar, working as Assistant Professor in PG & Research Department of

Computer Science, Hindusthan College of Arts & Science, Coimbatore, India with a

teaching experience of 10+ years. He is pursuing his doctorate in Computer Science

in network security. His research areas include artificial intelligence and machine

learning.

Secure Data Aggregation Process using Memetic Algorithm in IoT Enabled

Wireless Sensor Networks

Abstract: Over the last 10 years, the Internet of Things (IoT) acts as a backbone for entirely connected sensor

devices to achieve integrated communication settings and platforms, both virtual and real-world, in terms of

distributed systems. Wireless Sensor Networks (WSNs) tends to be a critical component of the Internet of

Things (IoT). The Internet of Things (IoT) monitors the surroundings, collects information, and sends it to a

Base Station (BS). WSN routing protocols are suited for IoT environments. However, due to the heterogeneity

of nodes, WSNs do not work optimally. Because the Internet of Things is a de-centralised network, the

network senses the information and transmits it to the base station. From this network, small sensor nodes

consume more energy, which appears to be a serious issue. They are susceptible to a variety of security

breaches because of wireless transmission channels and the possibility of deployment in harsh settings or

unsupervised areas. In addition, the installed security systems in these contexts have inherent drawbacks. As a

result, such systems are susceptible to cyber security threats. To improve the network's performance and to

overcome cyber security risks, a new algorithm called Memetic algorithm is proposed in this research.

Memetic algorithm is one of the best algorithms in terms of security breaches. To avoid network partitioning,

the algorithm is based on a routing mechanism and uses a mobile sink for data gathering. The NS2 Simulator

is used to simulate the proposed approach. The experimental findings are compared to existing algorithms to

show that the suggested technique is effective against common security threats like traffic interception and

ransomware. Additionally, the suggested approach improves throughput, network longevity, packet loss, end-

to-end delay, and energy consumption. Node authentication, data integrity, anti-compromise, and traffic

analysis resistance are all features of the proposed system.

Keywords: Wireless Sensor Networks (WSNs), IoT, Cyber Security, Security Breaches, Memetic Algorithm.

1. Introduction

WSNs are a crucial component of Internet of Things (IoT), which uses IoT equipments to

monitor and provide users with useful data about their environment. Smart home technology, forest

surveillance, medicare, satellite agriculture, and digital city are all examples of IoT applications. IoT

devices or sensors in the monitoring region sense physical characteristics like pressure, humidity,

and temperature, and transmit them to the Base Station (BS) via single-hop or multi-hop

communication. Sensor nodes have energy restrictions in WSNs for IoT.

The clustering mechanism has several shortcomings, including an energy hole and network

segmentation which severely reduces network longevity and subsequently leads to possibilities of

cyber threats. In this scenario, the need for securing the sensor network from various cyber threats

arises. These threats may either harm the individual nodes on the network or the entire sensor

network. More data packets are relayed by Cluster Head (CH) neighboring sensor nodes than

faraway sensor nodes, resulting in the clustering mechanism's early mortality of the cluster head

neighboring sensor nodes. Under these circumstances, faraway sensor nodes require enough energy

for data transmission, but they are powerless to transfer data packets to the cluster head and base

station due to a lack of network structure, resulting in an energy hole. The network has been

separated into several independent sections because of the lack of energy. Dividing the network into

partitions thus leads to cyber security threats and hence the cyber risks grow in complexity. Due to

the lack of appropriate communication links, certain portions are unable to communicate to the Base

Station.

Encryption and decryption are two data transformations defined by a cryptosystem. To

generate cipher text, unencrypted text, i.e. the plain text to be sent, is encrypted using an encryption

key. The decryption key is used to transform cypher text to plain text, which is the original data.

Symmetric cryptography is defined as encryption and decryption keys that are the same or can be

deduced from one another.

One key, referred to as the private key, is kept private, while the other, referred to as the

public key, is made public. The public key encrypts the communication, which can only be decrypted

with the private key. As a result, anyone with the public key cannot decrypt the encrypted message,

allowing for safe communication. The most prominent public key algorithm called RSA (short for

Rivest, Shamir, and Adleman) [8] is a cryptographic algorithm that is adapted.

The deployed nodes are usually immobile, and the sink position in traditional data collection

algorithms is usually fixed. Because of the high overhead of relaying messages, Sensor nodes that

are closer to the static sink consume more energy than those that are farther away. Because of the

issue, Sensor nodes that are close to a static sink expire more faster than other nodes, lowering

network longevity [1]. And, this concern eventually increases the possibility of cyber threats.

Heterogeneous nodes offer much more data processing and communication capabilities than

common nodes. Heterogeneous nodes, on the other hand, are expensive, thus it's critical to figure out

how to maintain a healthy energy balance and increase network longevity [2].

Data redundancy keeps track of every transfer in the network and helps to prevent Denial-of-

Service attacks. Authentication, risk assessment, and data security are application layer security

requirements for the safeguard of cybernated data that is critical for environmental security. To allow

access to data and information, external authentication is required.

The remainder of this article is organised as follows: Section II examines the associated work

flow of IoT enabled Wireless Sensor Networks, the Evolution of Cyber Threats and Network

Security. The Problem Statement is explained in Section III. Section IV proposes the proposed work

and algorithm details. Section V elucidates the Simulation Specifications and Performance Metrics

details. The results and discussion are presented in Section VI, and the paper's conclusion is

explained in Section VII.

Identificatio

Communication

Identificatio

IoT IoT

Ability to wirelessly

communicate across

pharmaceutical

industry

Ability to form

heterogeneous

WSN for attaining

digital health

Figure 1 IoT in WSN

2. Related Work

 Chuan Zhu et. al [1] explain with mobile sinks, provide a data collection technique that is

both high-availability and location-predictive. Sensor nodes use time synchronisation to detect the

location of mobile sinks, which minimises sensor node energy usage for sink location updates.

When the network uses high-available data collecting technique, and if a few of the mobile sinks are

inaccessible, it can continue to collect data. Furthermore, the energy consumption of nodes near

resident places can be balanced by changing the moving trajectory of a mobile sink. Data uploading

to the mobile sink is substantially slowed when there is an issue at the resident point.

Chunlin Li, et. al [2] The cluster routing approach for WSNs is introduced for explaining how to

stabilize energy and lengthen network lifespan. It is taken into account a group of heterogeneous

nodes and cluster heads. To begin, construct a layout of optimum node placement for varied nodes.

Second, a cluster routing approach for WSNs is suggested, that combines Heterogeneous Routing

Algorithm (HRA) with the LEACH-C cluster heads selection mechanism. Finally, detailed testing is

done to compare the efficacy of our suggested routing approach to that of numerous previous

traditional routing methods. The routing algorithm can significantly extend the lifetime and stability

of a network. It can also drastically reduce energy consumption.

Gurbinder Singh Brar et. al [3] explain a PEGASIS-DSR optimised routing protocol (PDORP)

based on hybrid optimization, this merged the proactive and reactive routing systems' cache and

directed transmission ideas. The simulation results for our proposed protocol show a decrease in end-

to-end transmission time and bit error rate without sacrificing energy efficiency. To obtain a fast and

damage-free path with reduced transmission delay,, both proactive and reactive routing

methodologies were applied in PDORP.

Jianhua Huang et. al [4] proposes ASGRP a circular segment grid clustering-based low-energy

multiple hop routing algorithm for WSNs. The recommended approach enhances the formation of

clusters in a WSN. The main concept is to divide the network into circular sector grids, with the BS

serving as the central point of each circular zone. The nodes of each circular sector grid are grouped

into clusters. In comparison to a four-sided grid, the distance between grid nodes and the BS can be

kept close to the same using a circular sector grid. The grid is created by calculating the inclination

between the border where the base station is located and the route from the nodes to base station. To

improve data transmission efficiency amongst the base station and CH nodes, we devised an

intermediate level multiple hop routing approach. The recommended routing approach minimises

transmission energy usage while uniformizing energy use. Multi-hop ASGRP, EEBCDA, CAMP,

and EEMRP achieves more consistent energy utilisation, greatly extend network lifetime, and have

greater scalability in networks of varying numbers and sizes..

Jianhua Huang et. al [5] explain to extend the network lifetime, We presented a grid clustering-

based energy-efficient multi-hop routing system. The proposed protocol separates the network region

across unequal grids to produce clusters of varying levels. Because grids located further away from

the sink are larger, cluster distribution is better acceptable, and the consumption of energy is spread

evenly among the functional nodes. Sensor nodes in the grids nearest to the sink send data directly to

the sink, but sensor nodes in the succeeding grids send data via multi-hop transmission. To decrease

the complexity of the election, a management method based on CM nodes is proposed, which may

eliminate the randomness of electing CH nodes, optimise the position of CH nodes, and lower the

communication cost of member nodes within clusters. In terms of energy efficiency, network

lifetime, and scalability, the proposed protocol surpasses current protocols.

Mbanaso. U. M et.al [6] The risks and hazards of IoT systems are studied, and a new policy-

driven requirement for overcoming reliance, privacy, and confidentiality difficulties in disseminate

scenarios is offered. In a tenure where policies must pool resources and interrelate without a glitch to

solve difficulties across various areas, digital entities should become more trustworthy, dependable,

and secure, assuring dynamic security and safety from end to end. It devises a framework that

permits Internet of Things (IoT) entities to express their abilities and specifications in a fine-tuned

strategy construct for mutual and rapid negotiation of proven qualities and resources. It also enables

inspection and hassle resolution, that are acute realistic factors in IoT atmospheres, as well as unified

trust, privacy, and secrecy resolution.

Moosa Ayati, et. al [7] explain reducing energy usage in WSNs is critical since it extends the

network's lifetime. Clustering is a powerful technique for extending the life of a network. LEACH is

the most widely used grouping method currently available. In a wireless sensor network with

minimal energy consumption, data disbursement in the BS is reduced. One of the most critical

factors that impacts network longevity and raises the danger of data loss is data overhead. Data

Packets collide with one another when data overhead develops, and some of them may be lost. As a

result, the missing packets must be retransmitted. The nodes lose energy as a result of these

retransmissions. To control data overhead, a reliable method for WSNs is necessary. In the suggested

SCHFTL, the super CH is liable for data transmission to the BS. The recommended solution reduces

data overhead, forfeiture, and relaying, resulting in a longer network lifetime.

Preetha. M et. al [8] explains the encryption as a minor variation on the well-known and widely

used RSA algorithm-OAEP. Even in the multi-query context, the security of the RSA problem

remains significantly tied to the complexity of the RSA problem, according to this scheme. The RSA

gives the business application the highest level of security. Furthermore, without using hybrid or

symmetric encryption, this approach can be utilised to encrypt large messages.

Ranida Hamidouche et. al [9] describes wireless sensor networks, which are employed in a

range of critical applications like health care and military monitoring, have a restricted energy

capability. To accomplish effective energy utilisation, LECR-GA, a networked protocol based on

genetic algorithms, is described. Using the suitable chromosomal exemplification, fitness function,

and Genetic Algorithm operations, we were capable of obtaining with least complexity, longer

system functionality and highest data rate. From the experimental results, the suggested algorithms

beat GAEEP and GABEEC concerning with energy consumption and throughput.

Se Ra Oh et. al [10] demonstrate how single M2M (i.e., Mobius) O-Auth 2 based security

module is designed to offer privacy and authorisation, two crucial security objectives for security in

IoT and protected meshing amongst IoT platforms. Examples include a block of secure components,

a credential transfer, and a security component reply. A resource request from an unauthorised user

will be blocked by the one M2M security module, whereas a resource demand from an authorised

user will be granted through.

Yiqun Zhang, et. al [11] explain the limited computing resources and required flexibility, IoT

security presents numerous issues. ASICs and coprocessors on the market today have a number of

drawbacks. In this study, we offer recryptor, a new architecture that effectively supports huge vector

calculations for crypto algorithms by leveraging in memory and near memory computing. When

compared to baseline CPU architecture, it preserves programmability and saves approximately 80%

of runtime and energy. Recryptor is a worthy transition in terms of balanced region, energy,

throughput, and configurability.

3. Problem Statement

The clustering process causes a number of issues, including energy hole problem and network

segmentation, which drastically increases the possibilities of threats in the sensor networks and

reduces the network lifetime. The sensor nodes relay more data packets with nearby Cluster Head

(CH) than far away sensor nodes, resulting in the early mortality of the CH. The energy hole problem

in the network is divided into numerous distinct pieces. Due to a shortage of adequate

communication links, the segments are unable to interconnect with the Base Station (BS). Sensor

node has enough energy for transmitting data, but they are powerless to transmit data packets to the

cluster head and BS due to a lack of network structure. To tackle the energy hole problem and

network partitioning issue, the clustering approach uses a lot of extra energy. Rather, they

overburden the system with hardware resources.

4. Proposed Work and Algorithm

4.1 Proposed Work

There are three types of the phases explained in IoT-enabled wireless sensor networks. The

first phase is Memetic algorithm based cluster creation. The second phase is data collection phase

based mobile sink based data collecting and third phase is RSA algorithm based cryptography

process.

Memetic Algorithm is used to elect CHs during the cluster building phase using a strict

memetic approach. Data collecting describes a cluster creation method based on a memetic

algorithm, followed by a data collection scheme based on a mobile sink. RSA based cryptography

process algorithm uses key-based encryption and decryption mechanism to improve cryptography

4.2 Algorithm

4.2.1 RSA Algorithm

A single integer is encrypted and decrypted using this algorithm. Converting larger or various

bits of information into (possibly big) numbers is the first step towards encoding them. Because RSA

is a slow method, it is generally used to encrypt the key of a quicker algorithm. This supplemental

technique uses the key decrypted by RSA to decode the rest of the message.

To solve the factoring problem and decipher the algorithm analytically, one must first resolve

the factoring problem (identify the two prime numbers that provide the given result when

multiplied). The problem is difficult to solve by brute force when the chosen numbers are large

enough, and there is currently no easier analytic solution.

4.2.2 Memetic Algorithm

The purpose of this phase is to identify network CHs that can significantly lower deployed

node energy consumption. As a result, in a heterogeneous WSN environment, we apply a memetic

algorithm, an intelligence-based optimization mechanism that produces a better optimal solution, for

optimal CH selection.

A genetic algorithm is being used to introduce a local search strategy. It's an evolutionary

computation meta-heuristic algorithm. It's a search-based optimization task inspired by nature. It

gives solutions that are close to ideal. The term “optimization” refers to the process of maximizing or

minimizing objective functions based on input parameters. They offer a variety of options. These

solutions are then mated and mutated, resulting in offspring, a process that occurs over several

offsprings.

Each person is graded on their fitness, and the fittest are picked to be parents. As a result,

genesis will continue until it reaches the termination condition. A genetic algorithm optimises

continuous and discrete functions while also providing a group of solutions rather than a individual

solution which improves with time. When a big number of factors are involved, it is an excellent

option. It is a good fit for NP-hard problems.

The cluster head is found inside the network's nodes using a memetic technique. It is split

into two sections. A node can participate in CH selection if its energy is greater than network's usual

energy. The initial bit series of the chromosome is created, with cluster head receiving a cost of '1'

and the remaining nodes receiving a value of '0.' When the aforementioned criteria is no longer met,

the CH is chosen using a memetic algorithm. The steady state phase occurs before crossover and

mutation and is defined as the application of a fitness function.

Initial Process: The parameters that affect network performance are selected. After that, the

parameters are assigned a starting value. Several parameters include the amount of sinks, the location

of every node, the network size, the sum of chromosomes, the population dimensions, the crossover

ratio, the rate of mutation, and the generation number. Weight quantities are also initialised.

Fitness Function: The objective functions which aid in application and optimization of the solution

to the intended outcomes. Then, using an iterative fitness function, chromosomes are converged to

superior solutions generation after generation. It needs to get to the solution rapidly and be related to

the goal.

Cluster Formation: Initially generate the x and y co-ordinate value of the nodes. Initiate the Sink

node. Sink node is divided into no of grid cells. The grid cell takes the midpoint to form a group of

the nodes for grid formation. Create the grid formation to assign a grid id and node id to all nodes. In

the network area, grids are four-sided and immobile in nature. During data collection at mobile sink,

it could be movable or inactive. The midpoint of grid cell is first picked as CH among all the other

nodes in the grid cell (CH). CH is a node with the shortest distance to the midway. Node-id and grid

ids are allocated to each node in the network.

Data Collection Phase: A mobile sink follows the trajectory to a rendezvous position and then

During the data gathering phase, transmits a data broadcasting message in communication range 2R.

To upload all of the network's information, the MS sends this data uploading message to the CHs. A

mobile phone ID and location information are included in the transmission. This message will only

be received by CHs that are all within the mobile sinks' communication range. The CH examines its

buffer state after receiving the data upload message. If the cluster head’s existing buffer is free, the

MS's data uploading message is simply ignored. The CH sends a response to the Mobile Sink (MS) if

the CH's current buffer state is not empty. The CH ID, remaining energy, and position information

are all included in the reply message. When MS receives a response message from the cluster head, it

assigns each replying CH a specific time window. Every CH communicating with the mobile sink

has their own time window. The CH can only respond during the time frame allotted to it. Among

the CHs in the queue, suitable scheduling is carried out. In transmission range 2R, a scheduling

communication is broadcast through mobile sinks. The individual CH data uploading plan is

included in the scheduling message.

Path Updating: Initialize Source Node as S and Distance Node as D values. The source node and

destination nodes check the present Cluster head of the group nodes. Source node is not up to

destination node. The algorithm verifies the CH group once the results have been sent. The CH is

included in the source input, which is the value of the source node. Finally, CH is sent to the

Destination Node.

4.3 Algorithm Steps

4.3.1 Enhanced RSA Algorithm Steps

Step 1: Generate two different primes k and y

Step 2: Give a key to present the file location

Step 3: Read the input key value and split character wise

Step 4: Calculate modulus a = k + y

Step 5: Calculate totient $(n) = (k-1) * (y-1)

Step 6: Select the pu integer of the public exponent, so that 1 < pu < $(a) and gcd ($(a), pu) = 1

Step 7: Calculate a value for pr for a private exponent such that pr = pu-1 mod $(n)

Step 8: Separated characters are arranged in ascending order and with new characters write new line

Step 9: Public key = [pu, a] e

Step 10: Private key = [pr, a] d

4.3.2 Enhanced Memetic Algorithm Based Cluster Formation Steps

Step 1: WSN is formed by deploying BS and Ml.

Step 2: Setup Phase

Step 3: for every n=1 to n do

Step 4: while Sei ≤ Eth do

Step 5: Take part in the election to choose CH

Step 6: if Spun > Spui , 1 ≤ j ≤ m, j ≠ n then

Step 7: Spun Elect CHn of Cn

Step 8: CHn bit = = 1 𝑎𝑛𝑑 ∀𝑆𝑖 𝑏𝑖𝑡 = = 0

Step 9: end IF

Step 10: end FOR

Step 11: Steady State Phase

Step 12: Centralized configuration of the cluster by Mobile Sink

Step 13: After determining the node distance and energy value, division of each grid cell by node id

and grid id is performed

Step 14: Node selects the CH (Cluster Head) to determine the value to compare the lowest distance

and maximum energy

Step 15: Apply MA and CHn Selection to the next generation population

Step 16: CHn bit = = 1 and ∀𝑆𝑖 𝑏𝑖𝑡 = = 0

Step 17: if CHn energy < Eth then

Step 18: Calculate 𝐹𝑛 = (𝜔1 ∗ 𝛼 + 𝜔2 ∗ 𝛽 + 𝜔3 ∗ 𝛾 + 𝜔4 ∗ 𝛿)−1

Step 19: Apply crossover between two leading competitors

Step 20: After a mutation, calculate a new chromosome

Step 21: Perform a local search

Step 22: Choose a new CHn

Step 23: CHn bit = = 1 and ∀𝑆𝑖 𝑏𝑖𝑡 = = 0

Step 24: End

4.3.3 Enhanced Data Collection Phase

Step 1: if MS is at a RP then

Step 2: broadcasting a message containing the mobile sink ID and location information at range 2R

Step 3: Include the source and destination at the start

Step 4: After all nodes have been checked for source node, initialise for loop and then include all

nodes

 for every i= 0; i < n; i++

Step 5: If CH receives message from MS about uploading

Step 6: if CH buffer is empty then

Step 7: Locate the source node within the cluster's group

 if (sn! = d && sn = = CH) then

Step 8: From source to CH, a cluster message is sent

Step 9: if (dn = = CH1 && CH! = CH1) then

Step 10: CH sends a cluster message to CH1, and CH1 sends a cluster message to CH2

Step 11: Discard the message

Step 12: else

Step 13: transmits a message to mobile sink with the cluster head ID, remaining energy, and position

information

Step 14: end

Step 15: When MS receives a response message from CH,

Step 16: assign a specific time slot

Step 17: End

4.3.4 Flow Diagram

Figure 2 Flow Diagram of Proposed Method

Start

Initially deploy the nodes in given simulation area

Initially broadcast the hello packet to neighbor nodes

Find the midpoint of grid cell using Mobile Sink

Generate the Clusters

Elect the Cluster Head (CH) based on Minimum

distance and Maximum energy value using Enhanced

Memetic Algorithm

Nodes send route request packets to neighbour nodes

Neighbor Nodes send route reply packets to nodes

Generate the routing process using Enhanced Data

Collection Phase

If Source and

Destination nodes

is presented in

their Cluster

Heads

Replace

New

Cluster

Head

No

Choose Optimal Routing Path

End

Yes

Generate the prime keys using Enhanced RSA

algorithm

5. Simulation Analysis

5.1 Simulation Specifications

S. No Specifications Values

1 Simulator Type NS - 2

2 Channel Type Wireless

3 Number of Nodes 100

4 Traffic Model CBR

5 Simulation Area 2250m * 2250m

6 Transmission range 400m

7 Routing Protocol DSR

8 MAC Protocol 802.11

9 Simulation Total Time 100ms

Table 1 Simulation Specifications

5.2 Performance Metrics

The simulation performance of the Enhanced Memetic Algorithm for IoT enabled WSN is

illustrated in this section. The simulations are performed on a network simulator (NS-2). The

network simulator NS2 is discrete event simulation software for performing network simulations. It

performs the simulation events such as sending, receiving, forwarding and dropping in the network

packets. Some of the protocol's performance measures were discussed. The following are the

performance metrics that were utilised to make the comparison.

 End-to-End Delay

 Packet Delivery Ratio

 Network Longevity

 Energy Consumption

 Throughput

 Packet Lost

5.2.1 End-to-End Delay

End-to End-Delay is the duration it acquires for a packet to traverse from its source node to

its destination node. The formula takes into account all of the period of time taken up by the router

to seek best route in network usage, as well as propagation, processing, and end to end delay for

packet pac sent by node k as a source node and successfully received at destination node.

End to End Delaykpac = starttimekpac - endtimekpac

The start-time kpac is the time when packets sent by node k are successfully received at the target

region, and the end-time kpac is the time when packets sent by the node k are successfully received

at target area.

5.2.2 Packet Delivery Ratio

The total amount of packets sent among the source node and destination node is referred as

the packet delivery ratio (PDR). It's used to figure out how much data is lost in packets during

transmission. While being transmitted from source to destination node, few packets could be missing

or channelled improperly to alternative nodes; in order to identify this loss, Generally, packet

delivery ratio is computed and assesses both the correctness and efficiency of adhoc algorithms for

routing. Higher packet delivery ratio is usually anticipated in any network. This is considered to be

the best transmission.

PDR = Total no. of packets received / Total of no.of packets sent

5.2.3 Energy Consumption

At the start of the simulation, the node has an initial value, which represents the node's

energy level at the start of the simulation. In the equation, this is referred to as Initial Energy. The

term "energy" in the simulation environment refers to the amount of energy in a node at any one

time, which is provided by battery power or another source. When a node in the simulation

environment hits 0 energy, it is no longer capable of transmitting or receiving packets, and it

becomes idle.

Energy of Nodes = Current_Energy - Initial_Energy

5.2.4 Network Longevity

The maximum duration of time, the installed sensors in the simulation can observe the

phenomena of interest among the nodes. The higher the Network Lifetime range, the better the

performance.

Network Longevity = 100 - ΣAi

ΣAi - Average of energy

5.2.5 Throughput

The total number of packets communicated amongst the communication time, or effective

data delivery within the scheduled time, is the throughput. The transmission value is calculated using

the standard rate of correctly transmitted packets from source node to destination node. It is

expressed in bits/bytes per second.

Average throughput = Total no. of packets successfully transferred-Total no. of packets/Transmitting Time

5.2.6 Packet Lost

The discrepancy between the total number of packets transmitted and the total number of packets

received is known as packet loss.

Packet Lost = Number of Packets Transmitted – Number of Packets Received

6. Results and Discussions

In NS2, the proposed retrievals' experimental outcomes are evaluated and analyzed. The

simulation area is 2250 × 2250 meters. Then, 100 nodes are deployed in the given simulation area.

The suggested algorithm is then applied to the metrics propagation data that has been acquired.

The suggested and existing methods are measured with the help of the classification methods

like that Enhanced Memetic Algorithm and Enhanced Data Collection Phase and Enhanced RSA

Algorithm. These metrics results of the different method are discussed below.

Table 2 End-to-End Delay Figure 3 End-to-End Delay

 Table 3 Energy Consumption Figure 4 Energy Consumption

Table 4 Packet Delivery Ratio Figure 5 Packet Delivery Ratio

Figure 6 Throughput

Table 5 Throughput

Time (ms)

End-to-End Delay

Zigbee ZRP

0 10 10

20 14.6321 12.5533

40 16.7812 14.0445

60 21.4381 19.5593

80 23.8123 21.6712

100 27.3541 24.9813

Time (ms)

Energy Consumption

Zigbee ZRP

0 100 100

20 80.32 77.80

40 76.43 74.56

60 74.24 71.72

80 71.39 68.79

100 68.34 65.97

Time (ms)

Packet Delivery Ratio

Zigbee ZRP

0 1.57 1.57

20 1.7625 1.7824

40 1.8254 1.8640

60 1.9354 1.9640

80 1.9952 2.0532

100 2.1089 2.1358

Time (ms)

Throughput

Zigbee ZRP

0 27 27

20 43.12 45.19

40 50.36 53.16

60 58.53 60.18

80 63.12 66.78

100 68.29 70.52

Table 6 Network Lifetime Figure 7 Network Lifetime

Table 7 Packet Lost Figure 8 Packet Lost

7. Conclusion

 To increase network performance in IoT-enabled wireless sensor networks, a memetic

algorithm with a mobile sink-based data gathering technique is used. For CH selection and cluster

development, the proposed method contains a unique clustering strategy that combines an algorithm

called Memetic with Powell's mechanism for conjugate gradient. The overhead of cluster creation

messages is greatly reduced. The memetic method, contrastingly, employs Powell's mechanism for

conjugate gradient to determine the ideal amount of cluster heads for reducing data communication

loss in energy. In the recommended technique, the mobile sink finds the best data collecting channel

to accumulate data from a large number of CHs, resulting in a significant reduction in end-to-end

delay. The RSA method encrypts bits and combines them with a public key, reducing decryption

time and increasing cryptosystem strength. As a result, the chance of cyber threats or network

dangers is decreased. The proposed method's performance has been assessed using a variety of

simulation results. The suggested approach surpasses the challenge of throughput, network longevity,

consumption of energy, packet delivery ratio, loss of packets, and throughput. The suggested

solution outperforms existing methods in terms of network performance and network security as

cyber dangers become more sophisticated.

Time (ms)

Network Lifetime

Zigbee ZRP

0 0 0

20 1500 2000

40 5200 6800

60 10250 12000

80 12090 14000

100 15035 16000

Time (ms)

Packet Lost

Zigbee ZRP

0 500 500

20 450.29 425.28

40 382.54 350.17

60 290.26 265.23

80 260.48 210.98

100 190.95 150.28

References

[1] Chuan Zhu, Kangning Quan, Guangjie Han and Joel J.P.C. Rodrigues. “A High-

Available and Location Predictive Data Gathering Scheme with Mobile Sinks for Wireless

Sensor Networks”, Computer Networks, Vol. 145, November 2018.

[2] Chunlin Li, Jingpan Bai, Jinguang Gu, Xin Yan and Youlong Luo. “Clustering Routing

Based on Mixed Integer Programming for Heterogeneous Wireless Sensor Networks”, Ad

Hoc Networks, Vol. 172, April 2018.

[3] Gurbinder Singh Brar, Shalli Ra,i, Vinay Chopra, Rahul Malhotra, Houbing Song and

Syed Hassan Ahmed. “Energy Efficient Direction-Based PDORP Routing Protocol for

WSN”, IEEE Access, Vol. 4, June 2016.

[4] Jianhua Huang, Danwei Ruan and Weiqiang Meng. “An annulus sector grid aided energy-

efficient multi-hop routing protocol for wireless sensor networks”, Computer Networks, Vol.

147, December 2018.

[5] Jianhua Huang, Yadong Hong, Ziming Zhao and Yubo Yuan. “An energy-efficient multi-

hop routing protocol based on grid clustering for wireless sensor networks”, Cluster

Computing, Vol. 20, June 2017.

[6] Mbanaso. U. M and Chukwudebe. G. A. “Requirement Analysis of IoT Security in

Distributed Systems”, 2017 IEEE 3rd International Conference on Electro- Technology for

National Development (NIGERCON), IEEE, Vol. 5, Issue 7, February 2018.

[7] Moosa Ayati, Mohammad Hossein Ghayyoumi and Atiyeh Keshavarz-Mohammadiyan.

“A fuzzy three-level clustering method for lifetime improvement of wireless sensor

networks”, Annals of Telecommunications, Vol. 73, March 2018.

[8] Preetha. M and Nithya. M. “A Study and Performance Analysis of RSA Algorithm”,

International Journal of Computer Science and Mobile Computing, Vol. 2, Issue. 6, June

2013.

[9] Ranida Hamidouche, Zibouda Aliouat and Abdelhak Gueroui. “Low Energy-Efficient

Clustering and Routing Based on Genetic Algorithm in WSNs”, Springer, Mobile, Secure,

and Programmable Networking, January 2019.

[10] Se-Ra Oh and Young-Gab Kim. “Development of IoT Security Component for

Interoperability”, 2017 13th International Computer Engineering Conference (ICENCO),

Vol. 12, Issue. 4, February 2018.

[11] Yiqun Zhang, Li Xu, Qing Dong, Jingcheng Wang, David Blaauw, and Dennis

Sylvester. “Recryptor: A Reconfigurable Cryptographic Cortex- M0 Processor With In-

Memory and Near-Memory Computing for IoT Security”, IEEE Journal of Solid-State

Circuits, Vol. 9, Issue. 3, February 2018.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Information Classification: General

Information Classification: General

Detection of Malicious Insider in Cloud

Environment based on Behavior Analysis

Padmavathi G
Department of Computer Science

Avinashilingam Institute for Home
Science and Higher Education for

Women
Coimbatore, Tamilnadu, India
padmavathi_cs@avinuty.ac.in

Shanmugapriya D
Department of Information Technology

Avinashilingam Institute for Home
Science and Higher Education for

Women
Coimbatore, Tamilnadu, India

shanmugapriya_it@avinuty.ac.in

Asha S
Department of Computer Science

Avinashilingam Institute for Home
Science and Higher Education for

Women
Coimbatore, Tamilnadu, India

 20phcsf005@avinuty.ac.in

Abstract— Insider threat is one of the most stimulating

security threats in an organization that possesses sensitive

information. In an organization, detecting malicious insider

threats is more challenging due to the behavioral changes of

malicious insider. To avoid the sensitive information leakage

that causes enormous loss, detecting the malicious insider within

an organization is necessary. The principal focus of this paper is

to find the user’s unauthorized activity by analyzing their

behavior on website i.e., websearch analysis. To find the user's

unauthorized activity by analyzing each user's behaviour, such

as the website activity of each individual. The user is classified

as a genuine user or malicious user based on user’s websearch

behavior. This paper proposes an insider threat detection

framework to analyze and detect the malicious insider threat

within an organization using user’s statistical behavior analysis.

Keywords—Insider threat detection, behavior analysis,

Malicious Insider.

I. INTRODUCTION

In the rapidly developing world, all business organizations
and the corporate sector recommend and enhance the business
by possessing the Internet-as-a-solution. Cloud computing is
a framework that accomplishes rapid provisioning on-demand
charge restricted self-service resources to its user over the
Internet. The migration of an organization to the cloud faces
some severe threats due to its changing environment. One of
the most challenging security threats faced by an organization
is Malicious insider or an authorized individual employee who
attempts to gain access to confidential information. Recent
reports show that 53% of organizations and 42% of U.S.
federal agencies suffer from insider threats every year [1].
Insider threat-related activities can be carried out
intentionally, such as information system sabotage,
intellectual property theft, and disclosure of classified
information, as well as unintentionally, such as careless use of
computing resources [1]. The primary goal of malicious
insiders is to cause economic and reputation loss by leaking
sensitive data to the competitive organization. So, it is
significant to detect the malicious insider threat in an
organization. one of the way for detecting the malicious
insider is by analysing the behavior of the user. This paper
proposes the detection of malicious insider activity using
behavior analysis. This paper aims to explore the insider data
using the logging behavior of employees within the
organization. The entire paper is organized into four sections.
Section II tabulates the literature study on malicious insider
detection method. Section III explains the overview of
proposed methodology. Section IV discusses the obtained
result. Section V concludes with possible scope for future
enhancement.

II. LITERATURE REVIEW

The primary concern is to analyze the CERT data to detect
the malicious insiders using logging behavior analysis. Table
I describes the work done in the field of various Insider Threat
detection frameworks.

Table I. LITERATURE REVIEW

S.

no

Author

Insider

Threat

Detection

Framework

applied

Algorithms

applied

Observations

1. Jiang et

al. (2018)

User

Behavior

Analysis

XGBoost,

SVM,

Random

Forest (RF)

User behaviour

analysis using

XGBoost outperforms

other algorithms based

on F-measure up to

99.96% to detect the

malicious activity

using CERT dataset

[5]

2. Eberle

and

Holder.

(2009)

Graph based

anomaly

detection

GBAD-

MDL,

GBAD-P

(probability

) and

GBAD-

MPS

(maximum

partial

substructur

e)

Graph-based anomaly

detection using MDL

algorithm identifies

the graph-based

anomalies such as

email, phone traffic

and business process

to detect the insider

threat than Probability

and MPS algorithm [6]

3. Liu and

et. (2018)

Anomaly-

based Insider

detection

Deep

Autoencode

r (AE)

Deep A.E. detects all

malicious insider

activity with a

reasonable false

positive rate using US-

CERT data [7]

4. Diop and

et. (2019)

Ensemble

Learning

Behavior

Anomaly

Detection

Framework

IForest,

One-Class

SVM,

Local

outlier

factor

(LOF),

Elliptic

envelope

(EE),

artificial

neural

network

(ANN),

Gaussian

naive

Bayes(Gnb)

Ensemble learning

behavior using Gbc

algorithm outperforms

other algorithms with

(75%-99%) in both

unsupervised learning

based testing and

supervised learning

based testing. An

ANN followed this

with (60%-99%) result

in both tests [8].

Information Classification: General

S.

no

Author

Insider

Threat

Detection

Framework

applied

Algorithms

applied

Observations

, Bagging

classifiers

(Bgc),

random

forest (RF)

and

gradient

boosting

(Gbc)

5. Jiang et

al. (2019)

Graph

Convolutional

Network

RF, SVM,

Logistic

Regression

(LR),

Convolutio

nal Neural

Network

(CNN),

Graph

Convolutio

nal

Network

(GCN)

GCN performs better

than other algorithm

based on accuracy,

precision and recall to

detect malicious

insider and fraud

activities [9].

6. Kim et al.

(2019)

User

Behavior

Modeling and

Anomaly

Detection

Algorithms

Gaussian

density

estimation,

Parzen

window

density,

Principal

component

User behavior

modelling and

anomaly detection

using Parzen and PCA

provided a better result

than other algorithms

to detect malicious

insider threats [10].

7. Senator

et al.

(2013)

Detecting

Insider

Threats in a

Real

Corporate

Database

IP Thief

Ambitious

Leader

Scenario

Detector,

File Events

Indicator

Anomaly

Detection,

Relational

Pseudo

Anomaly

Detection,

Repeated

Impossible

Discriminat

ion

Ensemble,

Grid-based

Fast

Anomaly

Discovery

given

Duplicates

(GFADD)

The multiple methods

detect the malicious

insider threat using

computer log activity

in an actual corporate

database [11].

8. Lv et al.

(2018)

Method based

on user and

role behavior

(MURB) and

Anomaly

Detection

(ADAD)

Isolation

Forest

MURB outperforms

the ADAD with 80%

precision and accuracy

for detection of the

malicious insider

threat using CERT

data [12].

9. Gamachc

hi and et.

(2017)

Graph and

anomaly

detection

Framework

Isolation

Forest

The combined graph-

based anomaly

detection framework

identifies 79% of

individuals as Genuine

users and 31% as

malicious insiders

with suspicious

activity [13].

S.

no

Author

Insider

Threat

Detection

Framework

applied

Algorithms

applied

Observations

10. Liu et al.

(2020)

Behaviour

analysis

Behaviour

analysis

The new behaviour

analysis framework

named Doc2vec

simplifies insider

threat detection based

on spatial and

temporal metrics [14].

11. Le and

Heywood

. (2021)

Anomaly

Detection for

Insider

Threats Using

Unsupervised

Ensembles

AutoEncod

er, Isolation

Forest,

Lightweigh

t on-line

detector of

anomalies

(LODA),

Local

Outlier

Factor

(LOF)

Unsupervised

ensemble-based

anomaly detection

using Autoencoder

outperforms the other

algorithm based on

voting metrics to

detect the malicious

insider threat [15].

12. Legg

(2015)

Behavior

based

malicious

insider threat

detection

Visual

Analytics

Visual analytics is

recommended to

detect malicious

insider threat activity

based on profiling

behaviour and selected

features as a

mitigation strategy

[16].

The above table shows that the various types of insider
threat framework utilize different user behavior modelling
technique to detect the malicious insider. Hence, the behavior
analysis is implemented to improve the precise detection of a
malicious insider in an organization.

III. METHODOLOGY

The Following Fig.1 shows the proposed malicious insider
threat framework methodology using behavior analysis to
detect a malicious insider threat in an organization.

A. Dataset

Data can be obtained from the monitoring process of the
organization, where different log files, such as email and
weblogs, firewall logs, network traffic captures, and different
types of user records are common [2]. The publicly available
dataset gathered from U.S. based Computer Emergency
Response Team (US-CERT) is used. It consists of information
regarding both malicious insider and genuine user activity.
This dataset has been collected from
https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_
Dataset/12841247/1 [2].. The above dataset contains the
activity information of individual employees in an
organization. It comprises the following data input: (i) user
activity log data such as web URL, email, file, access log, and
removable device connectivity records. It is dynamic and used
for the behavior analysis of users. (ii) Structure and
information of user and organization. It is considered as meta
information for data analysis. For example, Lightweight
Directory Access Protocol (LDAP) is considered as metadata
in CERT data.

Information Classification: General

Fig 1: Methodology Overview

In CERT data, the log information of malicious and non-
malicious activity is given based on the threat scenario
mentioned below.

• Scenario 1: An individual in an organization works
after working hours, carries a removable drive and
uploads sensitive information to the unauthorized
website such as wikileaks.org. Tries to resign from the
organization.

• Scenario 2: An individual in an organization visits a
job portal website and explores the employment
opportunities of a business competitor. An
individual's anomalous activity increases the use of a
removable device. Resigns the organization in future.

• Scenario 3: Unauthenticated administrator attempts
to use unauthorized software to collect sensitive
credentials, utilizes the removable device to get
sensitive information and tries to access the secure
system. Later email the critical information and
resigns from the organization.

• Scenario 4: Over three months, an individual often
logs in, searches, and forwards sensitive information
from other users' computers to personal email
addresses.

• Scenario 5: Uploads sensitive information such as
documents to Dropbox for personal gain.

Based on the dataset version, the particular scenario is
used. The proposed methodology uses the dataset version
r3.1. It satisfies the scenario 1 and scenario 2 from the
above-mentioned scenarios for further processing.

B. Data pre-processing

The primary CERT data contains log details of 516 days,

where 4000 users generate 135,117,169 log events. The

events are activity including email-based, login-based, device

storage-based, HTTP operations, psychometric details, file

information and daily log details [3]. The abovementioned

five scenarios apply scenario-1 and scenario-2 related

malicious insider threat data in this research. Other

information is ignored. The selected data undertakes three

pre-processing steps to make the data suitable for insider

detection. It includes data integration, data transformation
and data level sampling.

1) Data Integration: The malicious and non-malicious

activity information that satisfies the selected

scenario are gathered from device connectivity,

login status and website operation for detection of

malicious insider threat. A simple feature

concatenation technique is used to integrate the

selected records. Table II demonstrates the details of

integrated data.

Table II. INTEGRATED DATA

2) Data Transformation: The integrated data requires

data transformation to encode the absolute value for
further processing. The features, namely 'vector',

'pc', 'user' and 'activity' from integrated data is

converted into a numerical value. The value of 'date'

is converted into a number of epochs. Table III

shows the encoded data.

Table III. ENCODED DATA

3) Data Level Sampling: Jia et al. (2014) had proposed
the solution at the data level for the class imbalance

problem is based on sampling methods [4]. It is

accomplished using the undersampling technique

such as Near-Miss 2. In Near-Miss 2 algorithm, the

instance of the majority class was selected if it

satisfies the average distance for N outermost

instance of a minority class is minimum. In the pre-

processed dataset, a feature named 'InsiderThreat' is

selected as the target variable where class 0 is

majority class non-malicious event and class 1 is

S.

no

Feature name Explanation

1. InsiderThreat Malicious activity or not

2. Vector origin of data (HTTP/logon/device)

3. date Date

4. User The user id of an employee

5.
Pc Unique identification for each computer

6. Activity Actual activity of an employee in the pc

S.

no

Feature Before Encoding

After Encoding

1. InsiderThreat Numerical Numerical

2. Vector Categorical Numerical

3.
date Timestamp Number of

epochs

4. User Categorical Numerical

5. Pc Categorical Numerical

6. Activity Categorical Numerical

Information Classification: General

minority class malicious event. After resampling,

the majority class instance 0 is restructured and

equals the minority class instance 1. Table IV shows

the sampled data.

Table IV. SAMPLED DATA

C. Logging Behavioral Analysis

The behavior of each individual in an organization needs
to be analyzed to detect the malicious insider threat. Logging
behavior analysis using pre-processed data is used to get more
insight into the activity of each individual in an organization.
Based on the selected scenario, the visited website of each
individual is analyzed to identify the malicious user behavior.
It is accomplished by analyzing website activity to detect
malicious activity. Website activity behavior is an efficient
way to collect sensitive evidence from the organization. The
website behavior comprises visited website URLs for each
individual. Based on the selected scenario, unauthorized
access such as www.wikileaks.org and job-related websites is
considered an unauthorized malicious activity. Others are
considered non-malicious activity. It further conducts an in-
depth analysis of user website behavior to detect malicious
activity.

IV. RESULTS AND DISCUSSIONS

 The following Fig. 2 demonstrates the activity count of
genuine users and malicious users using pre-processed data.
From the Fig.2, it is observed that the activity of the genuine
user (0) is comparatively less than 10 activities per month. In
comparison, the total activity count of the malicious user (1)
is more than 70 activities per month. Hence, the activity of
the malicious user is increasingly high than the average
genuine user, and it is required to detect the user who
possesses the malicious activity. The users who visit
unauthorized websites are categorized as "Malicious" and
others as "Non-Malicious". It is required to find the total
number of unique activities of each individual in a particular
personal computer (pc) for both malicious and genuine users.

Fig 2: Activity count of Genuine user and malicious user

 The following Fig. 3 visualize the total number of activity
counts for both malicious and genuine users. The non-
malicious insider may possess the malicious activity. So,
categorize the user based on malicious activity to foresee the
user activity in Fig.4

Fig 3: Total number of activity count for each user.

It pinpoints user's activity based on the frequency of various
visited URLs using a particular device. Fig.4 shows that user
162 is an insider who visits the job-related website, namely,
http://lockheedmartinjobs.com for 13 times and frequently
uses the removable device for connection and disconnection.
This is categorized as a malicious insider that satisfies
scenario-2 based rule. User 221 is an insider who visits the
unauthorized website, namely http://wikileaks.org for 2 times
and is categorized as a malicious insider based on scenario-1
based rule.

Fig. 4. Total number of activity count for each user based on category.

S.n

o

Training

set
Before Sampling

After Sampling

1.

Non-

Malicious

Majority

class

instance

(0, 39732)

(0, 268)

2.

Malicious

Minority

class

instance

(1, 268)

(1, 268)

This work is supported by the Centre for Cyber Intelligence (CCI),

DST-CURIE-AI-Phase II Project, Avinashilingam Institute for Home

Science and Higher Education for Women. Coimbatore. Tamil nadu, India.

Information Classification: General

 The following Fig.5 explains the personal computer used by
a malicious user. i.e., user 162 uses the pc, namely 45, to
perform the malicious activity. User 221 uses the pc, namely
403, to perform the malicious activity. By converting the
numerical value into categorical value, the user id is retrieved.
Hence, user CCH0959 and CSF0929 is considered a malicious
insider who visits the unauthorized website and performs the
malicious activity.

Fig. 5. Personal computer used by Malicious user.

Table V demonstrates the company profile of malicious
insiders from LDAP. It shows that the user CCH0959 is
Cedric Cyrus Harrison, an Industrial Engineer from the
Industrial Engineering department who is considered a
malicious insider based on scenario-2. The user CSF0929 is
Chaney Sean Fuentes, a Production Line Worker from
Assembly Department considered a malicious insider based
on scenario-1.

Table V. Information of Malicious Insider

User id

Name Email Roles Depart

ment

Supervis

or

CCH095

9

Cedric

Cyrus

Harrison

Cedric.

Cyrus.H

arrison

@dtaa.c

om

Industrial

Engineer

1–

Industria

l

Engineer

ing

Desiree

Claudia

Booth

CSF0929 Chaney

Sean

Fuentes

Chaney.

Sean.Fu

entes@

dtaa.co

m

Productio-

n Line

Worker

3-

Assembl

y

Theodor

e Upton

Barry

V. CONCLUSION AND FUTURE ENHANCEMENT

In this proposed research paper, the logging behavior analysis
is implemented using pre-processed insider threat data to
detect the malicious insider threat in an organization. The user
who visits the unauthorized data leak websites and job-related
websites are considered malicious insiders based on scenario-
1 and scenario-2. The predicted malicious insider who
possesses malicious activity is correctly detected. It pinpoints
the basic information of malicious insiders from LDAP to
further mitigate such activity that could happen in the cloud

environment. It is highly beneficial in real-time insider threat
detection. In future, the graph-based behavior analysis using
deep learning can be proposed to detect the malicious insider
threat.

REFERENCES

[1] Collins, M. Common sense guide to mitigating insider threats.

CARNEGIE-MELLON UNIV PITTSBURGH PA PITTSBURGH

United States, 2016.

[2] Glasser, J., and Lindauer, B. 2013. Bridging the gap: A pragmatic

approach to generating insider threat data. In 2013 IEEE Security and

Privacy Workshops, pp. 98-104. IEEE.

[3] Meng, F., Lou, F., Fu, Y., and Tian, Z. 2018. Deep learning based

attribute classification insider threat detection for data security. In 2018
IEEE Third International Conference on Data Science in Cyberspace

(DSC), pp. 576-581. IEEE.

[4] Pengfei, J., Chunkai, Z., and Zhenyu, H. 2014. A new sampling
approach for classification of imbalanced data sets with high density.

In 2014 International Conference on Big Data and Smart Computing

(BIGCOMP), pp. 217-222. IEEE.

[5] Jiang, W., Tian, Y., Liu, W., and Liu, W. 2018. An Insider Threat

Detection Method Based on User Behavior Analysis. In International
Conference on Intelligent Information Processing, pp. 421-429.

Springer, Cham.

[6] Eberle, W., and Holder, L. 2009. Applying graph-based anomaly
detection approaches to the discovery of insider threats. In 2009 IEEE

International Conference on Intelligence and Security Informatics, pp.

206-208. IEEE.

[7] Liu, L., De Vel, O., Chen, C., Zhang, J., and Xiang, Y. 2018. Anomaly-
based insider threat detection using deep autoencoders. In 2018 IEEE

International Conference on Data Mining Workshops (ICDMW), pp.

39-48. IEEE.

[8] Diop, A., Emad, N., Winter, T., and Hilia, M.. 2019. Design of an

Ensemble Learning Behavior Anomaly Detection Framework.
International Journal of Computer and Information Engineering 13,

10: 547-555.

[9] Jiang, J., Chen, J., Gu, T., et al. 2019. Anomaly detection with graph
convolutional networks for insider threat and fraud detection. In

MILCOM 2019-2019 IEEE Military Communications Conference

(MILCOM), pp. 109-114. IEEE.

[10] Kim, J., Park, M., Kim, H., Cho, S., and Kang, P. 2019. Insider threat

detection based on user behavior modeling and anomaly detection

algorithms. Applied Sciences 9, 4018.

[11] Senator, T. E., Goldberg, H. G., Memory, A., et al. 2013. Detecting

insider threats in a real corporate database of computer usage activity.
In Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 1393-1401.

[12] Lv, Q., Wang, Y., Wang, L. and Wang, D. 2018. Towards a user and
role-based behavior analysis method for insider threat detection. In

2018 international conference on network infrastructure and digital

content (IC-NIDC), pp. 6-10. IEEE.

[13] Gamachchi, A., Sun, L. and Boztas, S. 2018. A graph based framework
for malicious insider threat detection. arXiv preprint

arXiv:1809.00141.

[14] Liu, L., Chen, C., Zhang, J., De Vel, O. and Xiang, Y. 2020. Doc2vec-
based insider threat detection through behaviour analysis of multi-

source security logs. In 2020 IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communications

(TrustCom), pp. 301-309. IEEE.

[15] Le, D.C. and Zincir-Heywood, N. 2021. Anomaly detection for insider
threats using unsupervised ensembles. IEEE Transactions on Network

and Service Management 18, 2: 1152-1164.

[16] Legg, P. A. 2015. Visualizing the insider threat: challenges and tools
for identifying malicious user activity. In 2015 IEEE Symposium on

Visualization for Cyber Security (VizSec), pp. 1-7. IEEE.

Evaluation of Supervised Machine Learning

Classifiers to Detect Mobile Malware

Dr. G. Padmavathi
Department of Computer Science
Avinashilingam Institute for Home
Science and Higher Education for

Women
Coimbatore, India

padmavathi_cs@avinuty.ac.in

Dr. D. Shanmugapriya
Department of Information

Technology
Avinashilingam Institute for Home
Science and Higher Education for

Women
Coimbatore, India

shanmugapriya_it@avinuty.ac.in

A. Roshni
Center for Cyber Intelligence

Avinashilingam Institute for Home
Science and Higher Education for

Women
Coimbatore, India

roshini_cci@avinuty.ac.in

Abstract – Due to the rapid growth of android

applications and mobile users in this technological era,

there is a large increasing cyber attacks through mobile

phones. During Pandemic period, mobile malware attacks

are one of the top most cyber attacks observed in android

mobile users to steal the user personal credentials by

intrusion of adware, spyware, banking malware, SMS

malware, riskware, viruses and so on. Machine learning

methods are very useful and amicable to detect mobile

malwares. Automation of the mobile malware detection is

the need of the hour and it is imperative to identify the

most suitable machine learning techniques. This paper

investigates the evaluation of supervised machine

learning algorithms that are applied to detect and classify

the mobile malwares. A systematic method of evaluation

of supervised machine learning model to detect the

malware data points and to classify them into binary

classification as malware or benign is essential. The

purpose of evaluating the supervised machine learning

algorithms is to identify the best supervised machine

learning model for mobile malware detection with high

efficacy rate. All important performance measures are

applied and the entire experiments are conducted using

benchmark dataset. Nine Supervised Machine Learning

methods are experimented and the results are discussed.

Keywords – Machine Learning, Malware Classification,

Mobile Malware, Supervised Learning, Python.

I. INTRODUCTION

A Malware or Malicious Software is one of the most

common types of cyber attack which was highly pre-

dominant during the pandemic by the means of

intruding as a malicious code to take over the system

control by monitoring all the user activities and steal

the user personal credentials without the knowledge

of the user [2] [3] [4].

Mobile malware are the important threats and android

based mobile malware are very significant today and

they compromise user’s credentials through

unauthorized access [2] [3] [4]. The aim of the paper

is to identify efficient supervised machine learning

algorithms to detect mobile malwares. The applied

algorithms classify the dataset into malware data and

benign data using a systematic approach which is

vital towards automation of mobile malware

detection.

Automation is the way of handling the problems

without human intervention by incorporating AI

methods to provide solution to reduce the processing

time [9]. The proposed approach experiments nine

different supervised machine learning models,

evaluate the models and recommends the most

efficient supervised ML model for accurate malware

detection. The evaluation of the supervised machine

learning models is done in terms of performance
metrics such as accuracy, precision, recall, F1 score,

R2 score, TPR, FPR and ROC [5] [7] [8].

The major contribution of this paper is to devise a

systematic methodology to test the supervised

machine learning model suitable for android based

mobile malware detection. This paper is divided into

different phases of Machine Learning work flow. The
first step is to acquire the dataset and analyze the data

to fit for the further development process. The

malware dataset taken for study contains 1,00,000

records with 35 feature attributes. In the second step,

data pre-processing methods are applied to check

whether the data contains any null values or

irrelevant values, which helps to remove the

unwanted data values then split the data into training

and test data set as in the ratio of 70:30. Third step,

applies the feature selection methods to find out the

important features of the dataset. Selecting the

significant features from the dataset will help to
improve the data processing time and provides better

accuracy of the ML algorithms. The methodology

uses three different feature selection algorithms

namely, (i) Univariate Selection (ii) Feature

mailto:shanmugapriya_it@avinuty.ac.in

Importance and (iii) Recursive Feature Elimination.

By applying the above mentioned feature selection

methods, out of 35 features top 10 important features

are selected for effective malware classification.

Fourth step, applies supervised machine learning
algorithms to identify and classify the data into

malware/benign [1] [2] [6] [9] [10]. Following

supervised machine learning algorithms are evaluated

in this study.

i. Decision tree

ii. Random forest

iii. K – Nearest Neighbors (KNN)

iv. Support Vector Machine (SVM)
v. Naïve Bayes

vi. AdaBoost

vii. Neural Network (MLP)

viii. Logistic Regression

ix. Linear Discriminant Analysis

Fifth step, evaluate the performance of the supervised

machine learning models using various evaluative
metrics to provide the best model for mobile malware

detection [1] [4].

II. PROBLEM DEFINITION

For automation of mobile malware detection, it is

necessary to develop a systematic framework. This

study applies supervised machine learning algorithms

to detect and classify the mobile malware. Nine

different supervised machine learning algorithms are

implemented and evaluated for performance and the

most suitable supervised machine learning models

are identified based on their performance.

III. METHODOLOGY

A study has been conducted for dynamic behavior

based android mobile malware classification using

supervised machine learning techniques [2]. The

entire methodology is divided into five different

phases. The first phase of the work is to acquire the

appropriate malware dataset for the problem. The

second phase involves data pre-processing to

investigate the quality of the data by removing the

duplicate records, noisy data and conversion of null

values into well defined format. The third phase is to

apply Feature Selection methods to find out the best
features of the dataset that strives to detect or classify

the malware data points with high efficacy rate with

less processing time. The fourth phase is building a

nine different Supervised Machine Learning Models

which automatically detects and classifies the

malware data points based on the training data [1] [2]

[6] [9] [10]. The fifth phase is to make a comparative

analysis between the nine different Supervised

Machine Learning models developed in the previous

phase by evaluating them using performance metrics

to suggest the best classifier model that can detect

and classify the malware data points accurately [1]
[4]. Figure 1 illustrates the step – by – step

methodology followed in this paper.

Fig. 1. Proposed Workflow Methodology

The above illustrated methodology is implemented

using Python programming in Jupyter Notebook

environment.

A. About the Dataset

Understanding of the dataset is very important for the

accurate prediction and classification. In this work,

the benchmark dataset is taken from the kaggle

community. The dataset consists of 1,00,000 records

and 35 feature attributes. The identification of

malware and classification as malware or benign

depends on the behavioral features. Table I shows the
description of the 35 android kernel attributes

involved in the dataset.

Acquire and Import the Malware Dataset

Apply Data Pre-Processing

Apply Feature Selection Methods

(Univariate Feature Selection, Feature

Importance based Feature Selection, Recursive

Feature Elimination)

 Apply Supervised Machine Learning

Algorithms

(Decision Tree, Random Forest, KNN, SVM,

Naïve Bayes, AdaBoost, Neural Network

(MLP), Logistic Regression, Linear

Discriminant Analysis)

Evaluate and Compare the Supervised

Machine Learning Algorithms

Recommend the Most Suitable Supervised

Machine Learning Methods

TABLE I. Mobile Malware Dataset – Attribute Description

S. No Malware Data

Attributes

Description

1 hash It is a common

method to uniquely

identify the

malware, which acts

as a fingerprint for

malware detection.

This data contains

100 unique hash

values. (i.e. unique

apk app names)

2 millisecond It denotes the time in

millisecond ranges
from 0 to 999

milliseconds.

3 state It denotes the flag of

unrunable or

runnable or stopped

tasks as ‘0’.

4 usage_counter It shows the

reference count for

task_struct of

process as ‘0’.

5 prio It denotes the system

task structure with

normal priority

value from 0 to 99
and real-time from

100 to 140 as

‘3.07b’.

6 static_prio It holds the

processes’ initial

priority value

ranging from 14.0k

to 31.9k.

7 normal_prio It denotes the

priority without

taking RT-

inheritance into

account as ‘0’.

8 policy It denotes the
scheduling policy

used for this process

as ‘0’.

9 vm_pgoff It is the page offset

of the area in the

file. This is the file

position of the first

page mapped in this

area when a file or

device is mapped. It

is the first page of

the file or device

marked as ‘0' in the

vm_area.

10 vm_truncate_count It denotes the

vm_areatruncate_co

unt values ranging

from 9695 to 27.2k.

11 task_size It represents the

current task size as
‘0’.

12 cached_hole_size It represents the size

of the free address

space hole as ‘0’.

13 free_area_cache It represents the first

address space hole

ranging from 0 to

515.

14 mm_users It represents the

address space of

users ranging from

612 to 995.

15 map_count It denotes the

number of mapping

areas ranging from
2588 to 28.2k.

16 hiwater_rss It represents the high

watermark of

resident set and sets

the peak of resident

set size as ‘0’.

17 total_vm It denotes the total

number of memory

pages ranging from

4 to 2810.

18 shared_vm It denotes the

number of shared

pages ranging from

112 to 120.

19 exec_vm It represents the

number of
executable memory

pages ranging from

92 to 196.

20 reserved_vm It represents the

number of reserved

memory pages

ranging from 29 to

755.

21 nr_ptes It represents the

number of page

table entries as ‘0’.

22 end_data It represents the end

address of data

ranging from 112 to
120.

23 last_interval It denotes the last

interval time before

thrashing ranging

from 0 to 9526.

24 nvcsw It denotes the

number of voluntary

context switches

ranging from 338k
to 385k.

25 nivcsw It denotes the

number of in

voluntary context

switches ranging

from 0 to 365.

26 min_flt It represents the

minor page faults

ranging from 0 to

256.

27 maj_flt It represents the

major page faults

from 112 to 120.

28 fs_excl_counter It holds the file

system exclusive
counter value

ranging from 0 to

18.

29 lock It denotes the file

lock as ‘3.20b’

30 utime It represents the

cumulative time

spends on user code

ranging from 372k

to 422k. (i.e. user

time)

31 stime It represents the

cumulative time

spent executing

system code ranging
from 3 to 7. (i.e.

system time)

32 gtime It denotes the group

time, cumulative

resource counter

ranging from 0 to

15. (i.e. guest time)

33 cgtime It denotes the

cumulative group

time, cumulative

resource counter as

‘0’.

34 signal_nvcsw It denotes the

cumulative resource
counter as ‘0’.

35 classification It contains binary

classification as

malware or benign.

B. Data Acquisition and Data Importing

The first and foremost step in developing a

Supervised Machine Learning Model is to acquire the

appropriate dataset and import them into the working

environment. Python is a platform excellence to
support enormous Machine Learning algorithms and

it is the suitable environment experiments

methodology of machine learning model. In this step,

the acquired malware dataset is converted into the

CSV file format and imported into the Python Jupyter

notebook environment.

C. Data Pre-processing

After importing the dataset, the second consequent

step to be performed is data pre-processing [4]. Data

pre-processing is the significant step to derive the

best results from the classifier models. The data pre-
processing is carried out by verifying that the taken

dataset contains any null values, un-defined values or

irrelevant values which may deviate the results and

degrade the performance of the models. The null

values are replaced into “zero (0)” or “unknown”

data values to overcome the processing issue. Label

encoding method is applied to convert the attributes

into the integer data type format to develop suitable

machine learning model. For developing ML models

the entire dataset is divided into training set and

testing set in the ratio of 70% for training and 30%
for testing [1] [2]. After this step, the dataset is now

available in a well defined format for further

processing.

D. Feature Selection

Feature selection is an important step of Feature

Engineering in Machine Learning process [6] [7] [8]

[10]. Feature Engineering is the third step, in the
Machine Learning process which extracts the features

from the raw dataset to provide labels for appropriate

classification. Following feature selection methods

are used to choose the top 10 important features

precisely out of 35 attributes of given dataset.

i. Univariate Feature Selection

The univariate feature selection approach is a

statistical technique for identifying relevant features

having a strong association to the target variable. The

scikit-learn library in Python includes a function

called SelectKBestclass. The SelectKBest class is
used in this study to choose the top 10 features out of

35 features in a mobile malware dataset using the chi-

square statistical test. . It calculates the Chi-square

coefficient for each non-negative feature in the target

class and chooses the desired top 10 features with the

highest Chi-square scores.

Chi – Square Formula:

ii. Feature Importance Based Feature

Selection

The feature importance property of the ensemble

model is used by the python tool feature importance to

pick important features of the dataset. Every property

of the dataset is given a score. Greater the score,

higher the significance or relevance feature towards

target variable. Using the python sklearn ensemble

model with the Extra tree classifier method, the

system calculates the top 10 features and displays the

scores of all the calculated features.

iii. Recursive Feature Elimination (RFE)

Recursively deleting characteristics and then

developing a classifier model with the remaining

attributes is how the recursive feature elimination is

done. The model selects the top 10 features of the

data by recursively eliminating the smallest features
using the python sklearn feature selection library,

RFE method, and the logistic regression classifier

algorithm, and the selected features are discernible as

True in the support array, and the features are ranked

using the choice “1” in the ranking array.

After incorporating three different feature selection

methods, the top 10 features are selected based on the

highest occurring nature of attributes from the three
different feature selection methods. This selection

helps in malware data point selection in optimum

time. Figure 2 indicates the top 10 selected features

out of the 35 features shown in Table I. The Top 10

Selected Features are listed below.

• hash

• state

• static_prio

• vm_truncate_count

• map_count

• total_vm

• reserved_vm

• nvcsw

• nivcsw

• utime

Fig. 2. The top 10 selected features based on the three different

feature selection methods

E. Supervised Machine Learning Models

The fourth phase is Model building. After selecting

the top 10 best features out of 35 attributes in the

dataset, now the data is ready for developing the

model based on Supervised Machine Learning

algorithms for the function of classification of mobile

malware as malware or benign. Following nine

supervised machine learning algorithms are

implemented to develop a mobile malware

classification model [1] [2] [6] [9] [10].

i. Decision Tree

ii. Random Forest

iii. KNN

iv. SVM

v. Naïve Bayes

vi. AdaBoost

vii. Neural Network (MLP)

viii. Logistic Regression

ix. Linear Discriminant Analysis

The above specified supervised learning algorithms
are developed using python Scikit learn library. The

general steps involved in developing the above

mentioned supervised machine learning models for

Mobile Malware classification is explained below:

Step 1: Import the necessary Scitkit learn Supervised

Machine Learning algorithm library.

Step 2: Fit the Supervised Machine Learning model

to the given training set.

Step 3: Based on the training data, forecast the test

result.

Step 4: Then, perform test data predictions and

calculate accuracy.

Step 5: Finally, the Supervised Machine Learning

Classifier model is ready.

Each Supervised Machine Learning algorithm detects
and classifies the malware data points depending

upon their own mechanism of calculating the

attributes thresholds. The distance calculation

measures vary for each algorithm and the weights for

the model parameters are determined for final

classification. Table II describes the criteria used to

detect and classify the mobile malware data points.

TABLE II. Supervised Machine Learning Algorithm’s

Classification Criteria

Algorithm Name Classification Criteria

Decision Tree Attribute Selection Measure

(Entropy or Gini Index)

Random Forest Attribute Selection Measure

(Entropy or Gini Index)

KNN Euclidian Distance Measure

SVM Hyperplane Dimensionality

Naïve Bayes Bayes Theorem

AdaBoost Ensemble Learning

MLP Back Propagation

Logistic Regression Sigmoid Function

LDA Collinearity / Class Variance

F. Performance Evaluation Metrics

Following performance metrics are used to evaluate

the nine Supervised Machine Learning models [1]

[4]:

• Accuracy

• Precision

• Recall

• F1 Score

• R2 Score

• Confusion matrix

The error rates of each Supervised Machine Learning

models are also calculated based on the following

[9]:

• Mean Absolute Error (MAE)

• Mean Squared Error (MSE)

• Root Mean Squared Error (RMSE)

The results are also visualized in Receiver Operating

Characteristic (ROC) curve form.

Accuracy: It is defined as the percentage of accurate

predictions of the test data.

True Positives (TP) – These are the accurately

predicted positive values, indicating that the actual

and predicted class values are both True.

True Negatives (TN) - These are the precisely

predicted negative values, indicating that the actual

and predicted class values are both False.

False Positives (FP) – When the predicted class is

True, but the actual class is False.

False Negatives (FN) – When the predicted class is

False, but the actual class is True.

Precision: It is the ratio of successfully predicted

positive observations to total expected positive

observations. It refers to the classifier's ability to

avoid mislabeling a negative sample as positive.

Precision = TP/TP+FP

Recall: It is the proportion of accurately predicted

positive observations to all observations in the actual

class of observations. It refers to the capacity of

classifier on its ability to locate all positive samples.

Recall = TP/TP+FN

F1 Score: It is the weighted average, or Harmonic

Mean, of Precision and Recall. As a result, this score
takes into account both false positives and false

negatives.

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

Or

F1 = 2TP / 2TP + FP + FN

R2 Score: The coefficient of determination

(sometimes referred to as R-Squared) is a statistical

metric used in regression models to determine how

much variance in the dependent variable can be

explained by the independent variable.

𝑹𝟐 = 𝟏 −
∑(𝒚𝒊 − �̂�)𝟐

∑(𝒚𝒊 − �̅�)𝟐

Where, �̂� is the predicted value of y and �̅� is the

mean value of y.

Confusion Matrix: It is a matrix that is used to

evaluate classification model’s performance for a

certain set of test data. Only if the true values for test
data are known, it can be determined. Since it

displays the errors in the model's performance as a

matrix, it is also known as an error matrix. Figure 3

shows the confusion matrix.

Fig. 3. Confusion Matrix

Mean Absolute Error (MAE) (L1 Loss): It is the

average of the absolute difference in the dataset's

actual and forecasted values. It computes the average

of the residuals in the dataset.

Mean Squared Error (MSE) (Quadratic Loss or

L2 Loss): It is the average of the squared difference

between the original and forecasted values. It

calculates the residuals' variance.

Root Mean Squared Error (RMSE): It is the

standard deviation of the errors that occur when
making a prediction on a dataset. This is the same as

MSE (Mean Squared Error). Only the root of the

number is taken into account when determining the

model's accuracy. The square root of Mean Squared

Error is termed as RMSE. It calculates the residuals'

standard deviation.

Where, �̂� is predicted value of y and �̅� is the
mean value of y.

Receiver Operating Characteristic (ROC) Curve:

It is a graph that shows how effectively a

classification algorithm works across all the

conceivable thresholds. The graph shows both the

true positive rate (Y-axis) and the false positive rate

(X-axis). As a function of the model's positive

classification threshold, it plots the true positive rate

(TPR) against the false positive rate (FPR).

AUC (Area under the Curve): It is a statistic used

for calculating the classification model's overall

performance based on the area under the ROC curve.

G. Comparative Analysis

Based on the above given evaluation measures, a

comparative analysis is made between the nine

different supervised machine learning models to

discover the best classifier model with high efficacy

rate. Figure 4 shows the overall accuracy comparison
of all supervised machine learning model. Table III

and Table IV describes the comparative analysis of

nine supervised machine learning algorithms based on

the evaluation metrics such as accuracy, precision,

recall, F1 score, R2 score and the error rate evaluation

based on Mean Absolute Error (MAE), Mean Squared

Error (MSE) and Root Mean Squared Error (RMSE).

Fig. 4. Overall Accuracy Comparison of all Supervised ML Model

TABLE III. Comparison of Precision, Recall, F1, R2 Score between Supervised Machine Learning Algorithms

S. No Supervised Machine

Learning Algorithms

Accuracy Score Precision Score Recall Score F1 Score R2 Score

1 Decision Tree Classifier 1.0 1.0 1.0 1.0 1.0

2 Random Forest Classifier 1.0 1.0 1.0 1.0 1.0

3 K – Nearest Neighbor

Classifier

0.996 0.996 0.996 0.996 0.986

4 Support Vector Machine

Classifier

0.999 1.0 0.999 0.999 0.999

5 Naïve Bayes Classifier 0.909 0.895 0.927 0.911 0.638

6 AdaBoost Classifier 1.0 1.0 1.0 1.0 1.0

7 Neural Network (MLP)

Classifier

1.0 1.0 1.0 1.0 1.0

8 Logistic Regression

Classifier

1.0 1.0 1.0 1.0 1.0

9 Linear Discriminant

Analysis Classifier

0.997 0.999 0.995 0.997 0.990

TABLE IV. Comparison of MAE, MSE, RMSE between Supervised Machine Learning Algorithms

S. No Supervised Machine Learning Algorithms MAE MSE RMSR

1 Decision Tree Classifier 0.0 0.0 0.0

2 Random Forest Classifier 0.0 0.0 0.0

3 K - Nearest Neighbor Classifier 0.003 0.003 0.057

4 Support Vector Machine Classifier 6.666 6.666 0.008

5 Naïve Bayes Classifier 0.0904 0.0904 0.3007

6 AdaBoost Classifier 0.0 0.0 0.0

7 Neural Network (MLP) Classifier 0.0 0.0 0.0

8 Logistic Regression Classifier 0.0 0.0 0.0

9 Linear Discriminant Analysis Classifier 0.0024 0.0024 0.0496

IV. RESULTS AND DISCUSSION

From the above comparative analysis (Table III and

Table IV) made between nine different supervised

machine learning algorithms it is evident that the

Decision Tree, Random Forest, AdaBoost, Neural

Network based Multi Layer Perceptron (MLP),

Logistic Regression accurately detect and classify the

malware data points with 100% accuracy at 0% error

rate for Mobile Malware binary classification.

Moreover, KNN algorithm classifies with 99.7%,

SVM algorithm classifies with 99.9%, Naïve Bayes

algorithm classifies with 90.9%, LDA algorithm

classifies with 99.7% accuracy. When compared with
Decision tree, Random forest, KNN, SVM,

AdaBoost, MLP, Logistic Regression and LDA

supervised model classifiers; the Naïve Bayes

classifier model performs little low in accuracy for

the given dataset.

Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9

shows the results of comparative analysis between
the nine supervised machine learning models

evaluated based on the performance metrics such as

accuracy, train accuracy, test accuracy, precision,

recall, F1 score, R2 score, confusion matrix, TPR,

FPR and ROC curve.

Fig. 5. Train Accuracy Comparison of all Supervised ML Models

Fig. 6. Test Accuracy Comparison of all Supervised ML Models

Fig. 7. Precision Comparison of all Supervised ML Models

Fig. 8. Recall Comparison of all Supervised ML Models

Fig. 9. Overall Comparative Representation of Supervised ML

Algorithms in ROC Curve

V. CONCLUSION

Android based mobile malware are of serious threats

to the user community due to challenges with user

data compromise. Therefore, automatic detection and

dynamic analysis of mobile malware are very crucial

to develop. The implementation of various

Supervised Machine Learning Models using Mobile

Malware Dataset, it is observed that, out of nine

Supervised Machine Learning algorithms, the Naïve

Bayes Classifier Model performs little low when

compared with other different eight given Supervised

Machine Learning algorithms for the given dataset.

This paper clearly describes the step-by-step

implementation procedure to develop an effective

Machine Learning Model using a Mobile Malware

Dataset in an elaborative way. Moreover, all

Supervised Machine Learning algorithms support
Malware classification with higher efficacy rate.

Thus, this study will be helpful for the learners to

understand and implement Supervised Machine

Learning algorithms in a systematic way by

incorporating mobile malware datasets to arrive at the

best results.

VI. REFERENCES

[1] Prema Agarwa., and Bhushan Trivedi. 2020 (November).

Evaluating Machine Learning Classifiers to detect Android

Malware. International Conference for Innovation in

Technology (INOCON). IEEE.

[2] Samaneh Mahdavifar., Andi Fitriah Abdul Kadir., Rasool

Fatemi., Dima Alhadidi., and Ali, A. Ghorbani. 2020.

Dynamic Android Malware Category Classification using

Semi-Supervised Deep Learning. International Conference

on Dependable, Autonomic and Secure Computing,

International Conference on Pervasive Intelligence and

Computing, International Conference on Cloud and Big Data

Computing, International Conference on Cyber Science and

Technology Congress. IEEE.

[3] Muhammad ‘Afif Husainiamer., Madihah Mohd Saudi., and

Azuan Ahmad. 2020. Classfication for iOS Mobile Malware

Inspired by Phylogenetic: Proof of Concept. IEEE

Conference on Open Systems (ICOS). IEEE.

[4] Jianguo Jiang., Song Li., Min Yu., et al. 2019. Android

Malware Family Classification Based on Sensitive Opcode

Sequence. IEEE Symposium on Computers and

Communications (ISCC). IEEE.

[5] Ken, F. Yu., and Richard, E. Harang. 2017. Machine

Learning in Malware Traffic Classifications. Milcom 2017

Track 3 – Cyber Security and Trusted Computing. IEEE.

[6] Marian Kuhnel., and Ulrike Meyer. 2016. Classification of

Short Messages Initiated by Mobile Malware. 11th

International Conference on Availability, Reliability and

Securit. IEEE.

[7] Xinjian Ma., Qi Biao., Wu Yang., and Jianguo Jiang. 2016.

Using Multi-features to reduce false positive in Malware

Classification. IEEE.

[8] George Cabau., Magda Buhu., and Ciprian Oprisa. 2016.

Malware Clasiification Based on Dynamic Behavior. 18th

International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing. IEEE.

[9] Mohammed, S. Alam., and T, Vuong. 2013. Random Forest

Classification for Detecting Android Malware. IEEE

International Conference on Green Computing and

Communications and IEEE Internet of Things and IEEE

Cyber Physical and Social Computing. IEEE.

[10] Ivan Firdausi., Charles Lim., Alva Erwin., and Anto Satriyo

Nugroho. 2010. Analysis of Machine Learning Techniques

used in Behavior-Based Malware Detection. Second

International Conference on Advances in Computing,

Control, and Telecommunication Technologies. IEEE.

VII. ACKNOWLEDGEMENT

This work is supported by DST-CURIE-AI project

during 2021 – 2023 by Centre for Cyber Intelligence

established under Centre for Machine Learning and

Intelligence, Avinashilingam Institute for Home

Science and Higher Education for Women,

Coimbatore – 43, Tamilnadu, INDIA.

	Dr. D NEthra
	SERI 2021 Paper Proceedings document - revised
	SERI Papers 2021
	SERI Conference Proceedings-01
	SERI Conference Proceedings-02
	IoT Paper_final
	Detection of Malicious Insider in Cloud Environment based on Behavior Analysis- Asha S Avinuty
	Evaluation of Supervised Machine Learning Classifiers to Detect Mobile Malware - Roshini A

	SERI Conference Proceedings-06

