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Secure Data Aggregation Process using Memetic Algorithm in IoT Enabled 

Wireless Sensor Networks 

Abstract: Over the last 10 years, the Internet of Things (IoT) acts as a backbone for entirely connected sensor 

devices to achieve integrated communication settings and platforms, both virtual and real-world, in terms of 

distributed systems. Wireless Sensor Networks (WSNs) tends to be a critical component of the Internet of 

Things (IoT). The Internet of Things (IoT) monitors the surroundings, collects information, and sends it to a 

Base Station (BS). WSN routing protocols are suited for IoT environments. However, due to the heterogeneity 

of nodes, WSNs do not work optimally. Because the Internet of Things is a de-centralised network, the 

network senses the information and transmits it to the base station. From this network, small sensor nodes 

consume more energy, which appears to be a serious issue. They are susceptible to a variety of security 

breaches because of wireless transmission channels and the possibility of deployment in harsh settings or 

unsupervised areas. In addition, the installed security systems in these contexts have inherent drawbacks. As a 

result, such systems are susceptible to cyber security threats. To improve the network's performance and to 

overcome cyber security risks, a new algorithm called Memetic algorithm is proposed in this research. 

Memetic algorithm is one of the best algorithms in terms of security breaches. To avoid network partitioning, 

the algorithm is based on a routing mechanism and uses a mobile sink for data gathering. The NS2 Simulator 

is used to simulate the proposed approach. The experimental findings are compared to existing algorithms to 

show that the suggested technique is effective against common security threats like traffic interception and 

ransomware. Additionally, the suggested approach improves throughput, network longevity, packet loss, end-

to-end delay, and energy consumption. Node authentication, data integrity, anti-compromise, and traffic 

analysis resistance are all features of the proposed system. 

Keywords: Wireless Sensor Networks (WSNs), IoT, Cyber Security, Security Breaches, Memetic Algorithm. 

1. Introduction 

WSNs are a crucial component of Internet of Things (IoT), which uses IoT equipments to 

monitor and provide users with useful data about their environment. Smart home technology, forest 

surveillance, medicare, satellite agriculture, and digital city are all examples of IoT applications. IoT 

devices or sensors in the monitoring region sense physical characteristics like pressure, humidity, 

and temperature, and transmit them to the Base Station (BS) via single-hop or multi-hop 

communication. Sensor nodes have energy restrictions in WSNs for IoT. 

The clustering mechanism has several shortcomings, including an energy hole and network 

segmentation which severely reduces network longevity and subsequently leads to possibilities of 

cyber threats. In this scenario, the need for securing the sensor network from various cyber threats 

arises. These threats may either harm the individual nodes on the network or the entire sensor 

network. More data packets are relayed by Cluster Head (CH) neighboring sensor nodes than 

faraway sensor nodes, resulting in the clustering mechanism's early mortality of the cluster head 

neighboring sensor nodes. Under these circumstances, faraway sensor nodes require enough energy 



for data transmission, but they are powerless to transfer data packets to the cluster head and base 

station due to a lack of network structure, resulting in an energy hole. The network has been 

separated into several independent sections because of the lack of energy. Dividing the network into 

partitions thus leads to cyber security threats and hence the cyber risks grow in complexity. Due to 

the lack of appropriate communication links, certain portions are unable to communicate to the Base 

Station. 

Encryption and decryption are two data transformations defined by a cryptosystem. To 

generate cipher text, unencrypted text, i.e. the plain text to be sent, is encrypted using an encryption 

key. The decryption key is used to transform cypher text to plain text, which is the original data. 

Symmetric cryptography is defined as encryption and decryption keys that are the same or can be 

deduced from one another.   

One key, referred to as the private key, is kept private, while the other, referred to as the 

public key, is made public. The public key encrypts the communication, which can only be decrypted 

with the private key. As a result, anyone with the public key cannot decrypt the encrypted message, 

allowing for safe communication. The most prominent public key algorithm called RSA (short for 

Rivest, Shamir, and Adleman) [8] is a cryptographic algorithm that is adapted. 

The deployed nodes are usually immobile, and the sink position in traditional data collection 

algorithms is usually fixed. Because of the high overhead of relaying messages, Sensor nodes that 

are closer to the static sink consume more energy than those that are farther away. Because of the 

issue, Sensor nodes that are close to a static sink expire more faster than other nodes, lowering 

network longevity [1]. And, this concern eventually increases the possibility of cyber threats.  

Heterogeneous nodes offer much more data processing and communication capabilities than 

common nodes. Heterogeneous nodes, on the other hand, are expensive, thus it's critical to figure out 

how to maintain a healthy energy balance and increase network longevity [2]. 

Data redundancy keeps track of every transfer in the network and helps to prevent Denial-of-

Service attacks. Authentication, risk assessment, and data security are application layer security 

requirements for the safeguard of cybernated data that is critical for environmental security. To allow 

access to data and information, external authentication is required. 

The remainder of this article is organised as follows: Section II examines the associated work 

flow of IoT enabled Wireless Sensor Networks, the Evolution of Cyber Threats and Network 

Security. The Problem Statement is explained in Section III. Section IV proposes the proposed work 

and algorithm details. Section V elucidates the Simulation Specifications and Performance Metrics 

details. The results and discussion are presented in Section VI, and the paper's conclusion is 

explained in Section VII. 
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Figure 1 IoT in WSN 

2. Related Work 

 Chuan Zhu et. al [1] explain with mobile sinks, provide a data collection technique that is 

both high-availability and location-predictive. Sensor nodes use time synchronisation to detect the 

location of mobile sinks, which minimises sensor node energy usage for sink location updates. 

When the network uses high-available data collecting technique, and if a few of the mobile sinks are 

inaccessible, it can continue to collect data. Furthermore, the energy consumption of nodes near 

resident places can be balanced by changing the moving trajectory of a mobile sink. Data uploading 

to the mobile sink is substantially slowed when there is an issue at the resident point. 

Chunlin Li, et. al [2] The cluster routing approach for WSNs is introduced for explaining how to 

stabilize energy and lengthen network lifespan. It is taken into account a group of heterogeneous 

nodes and cluster heads. To begin, construct a layout of optimum node placement for varied nodes. 

Second, a cluster routing approach for WSNs is suggested, that combines Heterogeneous Routing 

Algorithm (HRA) with the LEACH-C cluster heads selection mechanism. Finally, detailed testing is 

done to compare the efficacy of our suggested routing approach to that of numerous previous 

traditional routing methods. The routing algorithm can significantly extend the lifetime and stability 

of a network. It can also drastically reduce energy consumption. 

Gurbinder Singh Brar et. al [3] explain a PEGASIS-DSR optimised routing protocol (PDORP) 

based on hybrid optimization, this merged the proactive and reactive routing systems' cache and 

directed transmission ideas. The simulation results for our proposed protocol show a decrease in end-

to-end transmission time and bit error rate without sacrificing energy efficiency. To obtain a fast and 

damage-free path with reduced transmission delay,, both proactive and reactive routing 

methodologies were applied in PDORP. 

Jianhua Huang et. al [4] proposes ASGRP a circular segment grid clustering-based low-energy 

multiple hop routing algorithm for WSNs. The recommended approach enhances the formation of 



clusters in a WSN. The main concept is to divide the network into circular sector grids, with the BS 

serving as the central point of each circular zone. The nodes of each circular sector grid are grouped 

into clusters. In comparison to a four-sided grid, the distance between grid nodes and the BS can be 

kept close to the same using a circular sector grid. The grid is created by calculating the inclination 

between the border where the base station is located and the route from the nodes to base station. To 

improve data transmission efficiency amongst the base station and CH nodes, we devised an 

intermediate level multiple hop routing approach. The recommended routing approach minimises 

transmission energy usage while uniformizing energy use. Multi-hop ASGRP, EEBCDA, CAMP, 

and EEMRP achieves more consistent energy utilisation, greatly extend network lifetime, and have 

greater scalability in networks of varying numbers and sizes.. 

Jianhua Huang et. al [5] explain to extend the network lifetime, We presented a grid clustering-

based energy-efficient multi-hop routing system. The proposed protocol separates the network region 

across unequal grids to produce clusters of varying levels. Because grids located further away from 

the sink are larger, cluster distribution is better acceptable, and the consumption of energy is spread 

evenly among the functional nodes. Sensor nodes in the grids nearest to the sink send data directly to 

the sink, but sensor nodes in the succeeding grids send data via multi-hop transmission. To decrease 

the complexity of the election, a management method based on CM nodes is proposed, which may 

eliminate the randomness of electing CH nodes, optimise the position of CH nodes, and lower the 

communication cost of member nodes within clusters. In terms of energy efficiency, network 

lifetime, and scalability, the proposed protocol surpasses current protocols. 

Mbanaso. U. M et.al [6] The risks and hazards of IoT systems are studied, and a new policy-

driven requirement for overcoming reliance, privacy, and confidentiality difficulties in disseminate 

scenarios is offered. In a tenure where policies must pool resources and interrelate without a glitch to 

solve difficulties across various areas, digital entities should become more trustworthy, dependable, 

and secure, assuring dynamic security and safety from end to end. It devises a framework that 

permits Internet of Things (IoT) entities to express their abilities and specifications in a fine-tuned 

strategy construct for mutual and rapid negotiation of proven qualities and resources. It also enables 

inspection and hassle resolution, that are acute realistic factors in IoT atmospheres, as well as unified 

trust, privacy, and secrecy resolution. 

Moosa Ayati, et. al [7] explain reducing energy usage in WSNs is critical since it extends the 

network's lifetime. Clustering is a powerful technique for extending the life of a network. LEACH is 

the most widely used grouping method currently available. In a wireless sensor network with 

minimal energy consumption, data disbursement in the BS is reduced. One of the most critical 

factors that impacts network longevity and raises the danger of data loss is data overhead. Data 

Packets collide with one another when data overhead develops, and some of them may be lost. As a 

result, the missing packets must be retransmitted. The nodes lose energy as a result of these 



retransmissions. To control data overhead, a reliable method for WSNs is necessary. In the suggested 

SCHFTL, the super CH is liable for data transmission to the BS. The recommended solution reduces 

data overhead, forfeiture, and relaying, resulting in a longer network lifetime. 

Preetha. M et. al [8] explains the encryption as a minor variation on the well-known and widely 

used RSA algorithm-OAEP. Even in the multi-query context, the security of the RSA problem 

remains significantly tied to the complexity of the RSA problem, according to this scheme. The RSA 

gives the business application the highest level of security. Furthermore, without using hybrid or 

symmetric encryption, this approach can be utilised to encrypt large messages. 

Ranida Hamidouche et. al [9] describes wireless sensor networks, which are employed in a 

range of critical applications like health care and military monitoring, have a restricted energy 

capability. To accomplish effective energy utilisation, LECR-GA, a networked protocol based on 

genetic algorithms, is described. Using the suitable chromosomal exemplification, fitness function, 

and Genetic Algorithm operations, we were capable of obtaining with least complexity, longer 

system functionality and highest data rate. From the experimental results, the suggested algorithms 

beat GAEEP and GABEEC concerning with energy consumption and throughput. 

Se Ra Oh et. al [10] demonstrate how single M2M (i.e., Mobius) O-Auth 2 based security 

module is designed to offer privacy and authorisation, two crucial security objectives for security in 

IoT and protected meshing amongst IoT platforms. Examples include a block of secure components, 

a credential transfer, and a security component reply. A resource request from an unauthorised user 

will be blocked by the one M2M security module, whereas a resource demand from an authorised 

user will be granted through. 

Yiqun Zhang, et. al [11] explain the limited computing resources and required flexibility, IoT 

security presents numerous issues. ASICs and coprocessors on the market today have a number of 

drawbacks. In this study, we offer recryptor, a new architecture that effectively supports huge vector 

calculations for crypto algorithms by leveraging in memory and near memory computing. When 

compared to baseline CPU architecture, it preserves programmability and saves approximately 80% 

of runtime and energy. Recryptor is a worthy transition in terms of balanced region, energy, 

throughput, and configurability. 

3. Problem Statement 

The clustering process causes a number of issues, including energy hole problem and network 

segmentation, which drastically increases the possibilities of threats in the sensor networks and 

reduces the network lifetime. The sensor nodes relay more data packets with nearby Cluster Head 

(CH) than far away sensor nodes, resulting in the early mortality of the CH. The energy hole problem 

in the network is divided into numerous distinct pieces. Due to a shortage of adequate 

communication links, the segments are unable to interconnect with the Base Station (BS). Sensor 

node has enough energy for transmitting data, but they are powerless to transmit data packets to the 



cluster head and BS due to a lack of network structure. To tackle the energy hole problem and 

network partitioning issue, the clustering approach uses a lot of extra energy. Rather, they 

overburden the system with hardware resources. 

4. Proposed Work and Algorithm 

4.1 Proposed Work 

There are three types of the phases explained in IoT-enabled wireless sensor networks. The 

first phase is Memetic algorithm based cluster creation. The second phase is data collection phase 

based mobile sink based data collecting and third phase is RSA algorithm based cryptography 

process. 

Memetic Algorithm is used to elect CHs during the cluster building phase using a strict 

memetic approach. Data collecting describes a cluster creation method based on a memetic 

algorithm, followed by a data collection scheme based on a mobile sink. RSA based cryptography 

process algorithm uses key-based encryption and decryption mechanism to improve cryptography 

4.2 Algorithm 

4.2.1 RSA Algorithm 

A single integer is encrypted and decrypted using this algorithm. Converting larger or various 

bits of information into (possibly big) numbers is the first step towards encoding them. Because RSA 

is a slow method, it is generally used to encrypt the key of a quicker algorithm. This supplemental 

technique uses the key decrypted by RSA to decode the rest of the message. 

To solve the factoring problem and decipher the algorithm analytically, one must first resolve 

the factoring problem (identify the two prime numbers that provide the given result when 

multiplied). The problem is difficult to solve by brute force when the chosen numbers are large 

enough, and there is currently no easier analytic solution. 

4.2.2 Memetic Algorithm 

The purpose of this phase is to identify network CHs that can significantly lower deployed 

node energy consumption. As a result, in a heterogeneous WSN environment, we apply a memetic 

algorithm, an intelligence-based optimization mechanism that produces a better optimal solution, for 

optimal CH selection. 

A genetic algorithm is being used to introduce a local search strategy. It's an evolutionary 

computation meta-heuristic algorithm. It's a search-based optimization task inspired by nature. It 

gives solutions that are close to ideal. The term “optimization” refers to the process of maximizing or 

minimizing objective functions based on input parameters. They offer a variety of options. These 

solutions are then mated and mutated, resulting in offspring, a process that occurs over several 

offsprings.  

Each person is graded on their fitness, and the fittest are picked to be parents. As a result, 

genesis will continue until it reaches the termination condition. A genetic algorithm optimises 



continuous and discrete functions while also providing a group of solutions rather than a individual 

solution which improves with time. When a big number of factors are involved, it is an excellent 

option. It is a good fit for NP-hard problems. 

The cluster head is found inside the network's nodes using a memetic technique. It is split 

into two sections. A node can participate in CH selection if its energy is greater than network's usual 

energy. The initial bit series of the chromosome is created, with cluster head receiving a cost of '1' 

and the remaining nodes receiving a value of '0.' When the aforementioned criteria is no longer met, 

the CH is chosen using a memetic algorithm. The steady state phase occurs before crossover and 

mutation and is defined as the application of a fitness function. 

Initial Process: The parameters that affect network performance are selected. After that, the 

parameters are assigned a starting value. Several parameters include the amount of sinks, the location 

of every node, the network size, the sum of chromosomes, the population dimensions, the crossover 

ratio, the rate of mutation, and the generation number. Weight quantities are also initialised. 

Fitness Function: The objective functions which aid in application and optimization of the solution 

to the intended outcomes. Then, using an iterative fitness function, chromosomes are converged to 

superior solutions generation after generation. It needs to get to the solution rapidly and be related to 

the goal. 

Cluster Formation: Initially generate the x and y co-ordinate value of the nodes. Initiate the Sink 

node. Sink node is divided into no of grid cells. The grid cell takes the midpoint to form a group of 

the nodes for grid formation. Create the grid formation to assign a grid id and node id to all nodes. In 

the network area, grids are four-sided and immobile in nature. During data collection at mobile sink, 

it could be movable or inactive. The midpoint of grid cell is first picked as CH among all the other 

nodes in the grid cell (CH). CH is a node with the shortest distance to the midway. Node-id and grid 

ids are allocated to each node in the network. 

Data Collection Phase: A mobile sink follows the trajectory to a rendezvous position and then 

During the data gathering phase, transmits a data broadcasting message in communication range 2R. 

To upload all of the network's information, the MS sends this data uploading message to the CHs. A 

mobile phone ID and location information are included in the transmission. This message will only 

be received by CHs that are all within the mobile sinks' communication range. The CH examines its 

buffer state after receiving the data upload message. If the cluster head’s existing buffer is free, the 

MS's data uploading message is simply ignored. The CH sends a response to the Mobile Sink (MS) if 

the CH's current buffer state is not empty. The CH ID, remaining energy, and position information 

are all included in the reply message. When MS receives a response message from the cluster head, it 

assigns each replying CH a specific time window. Every CH communicating with the mobile sink 

has their own time window. The CH can only respond during the time frame allotted to it. Among 

the CHs in the queue, suitable scheduling is carried out. In transmission range 2R, a scheduling 



communication is broadcast through mobile sinks. The individual CH data uploading plan is 

included in the scheduling message. 

Path Updating: Initialize Source Node as S and Distance Node as D values. The source node and 

destination nodes check the present Cluster head of the group nodes. Source node is not up to 

destination node. The algorithm verifies the CH group once the results have been sent. The CH is 

included in the source input, which is the value of the source node. Finally, CH is sent to the 

Destination Node. 

4.3 Algorithm Steps 

4.3.1 Enhanced RSA Algorithm Steps 

Step 1: Generate two different primes k and y 

Step 2: Give a key to present the file location 

Step 3: Read the input key value and split character  wise 

Step 4: Calculate modulus a = k + y 

Step 5: Calculate totient $(n) = (k-1) * (y-1) 

Step 6: Select the pu integer of the public exponent, so that 1 < pu < $(a) and gcd ($(a), pu) = 1 

Step 7: Calculate a value for pr for a private exponent such that pr = pu-1 mod $(n) 

Step 8: Separated characters are arranged in ascending order and with new characters write new line 

Step 9: Public key = [pu, a] e 

Step 10: Private key = [pr, a] d 

4.3.2 Enhanced Memetic Algorithm Based Cluster Formation Steps 

Step 1: WSN is formed by deploying BS and Ml. 

Step 2: Setup Phase 

Step 3: for every n=1 to n do 

Step 4: while Sei ≤ Eth do 

Step 5: Take part in the election to choose CH 

Step 6: if Spun > Spui , 1 ≤ j ≤ m, j ≠ n then 

Step 7: Spun Elect CHn of Cn  

Step 8: CHn bit = = 1 𝑎𝑛𝑑 ∀𝑆𝑖 𝑏𝑖𝑡 = = 0 

Step 9: end IF 

Step 10: end FOR 

Step 11: Steady State Phase 

Step 12: Centralized configuration of the cluster by Mobile Sink 

Step 13: After determining the node distance and energy value, division of each grid cell by node id 

and grid id is performed 

Step 14: Node selects the CH (Cluster Head) to determine the value to compare the lowest distance 

and maximum energy 



Step 15: Apply MA and CHn Selection to the next generation population 

Step 16: CHn bit = = 1 and ∀𝑆𝑖 𝑏𝑖𝑡 = = 0 

Step 17: if CHn energy < Eth then 

Step 18: Calculate 𝐹𝑛 = (𝜔1 ∗  𝛼 +  𝜔2 ∗  𝛽 +  𝜔3 ∗  𝛾 +  𝜔4 ∗  𝛿)−1 

Step 19: Apply crossover between two leading competitors 

Step 20: After a mutation, calculate a new chromosome 

Step 21: Perform a local search 

Step 22: Choose a new CHn 

Step 23: CHn bit = = 1 and ∀𝑆𝑖 𝑏𝑖𝑡 = = 0 

Step 24: End 

4.3.3 Enhanced Data Collection Phase 

Step 1: if MS is at a RP then  

Step 2: broadcasting a message containing the mobile sink ID and location information at range 2R 

Step 3: Include the source and destination at the start 

Step 4: After all nodes have been checked for source node, initialise for loop and then include all 

nodes 

 for every i= 0; i < n; i++ 

Step 5: If CH receives message from MS about uploading 

Step 6: if CH buffer is empty then 

Step 7: Locate the source node within the cluster's group 

 if (sn! = d && sn = = CH) then 

Step 8: From source to CH, a cluster message is sent 

Step 9: if (dn = = CH1 && CH! = CH1) then 

Step 10: CH sends a cluster message to CH1, and CH1 sends a cluster message to CH2 

Step 11: Discard the message 

Step 12:  else 

Step 13: transmits a message to mobile sink with the cluster head ID, remaining energy, and position 

information 

Step 14:  end 

Step 15: When MS receives a response message from CH, 

Step 16:  assign a specific time slot 

Step 17: End  

 

 

 

 



4.3.4 Flow Diagram 

 

Figure 2 Flow Diagram of Proposed Method 
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5. Simulation Analysis 

5.1 Simulation Specifications 

S. No Specifications Values 

1 Simulator Type NS - 2 

2 Channel Type Wireless 

3 Number of Nodes 100 

4 Traffic Model CBR 

5 Simulation Area 2250m * 2250m 

6 Transmission range 400m 

7 Routing Protocol DSR 

8 MAC Protocol 802.11 

9 Simulation Total Time 100ms 

 

Table 1 Simulation Specifications 

5.2 Performance Metrics 

The simulation performance of the Enhanced Memetic Algorithm for IoT enabled WSN is 

illustrated in this section. The simulations are performed on a network simulator (NS-2). The 

network simulator NS2 is discrete event simulation software for performing network simulations. It 

performs the simulation events such as sending, receiving, forwarding and dropping in the network 

packets. Some of the protocol's performance measures were discussed. The following are the 

performance metrics that were utilised to make the comparison. 

 End-to-End Delay 

 Packet Delivery Ratio 

 Network Longevity 

 Energy Consumption 

 Throughput 

 Packet Lost 

5.2.1 End-to-End Delay 

End-to End-Delay is the duration it acquires for a packet to traverse from its source node to 

its destination node. The formula takes into account all of the period of  time taken up by the router 

to seek best route in network usage, as well as propagation, processing, and end to end delay for 

packet pac sent by node k as a source node and successfully received at destination node. 

End to End Delaykpac = starttimekpac - endtimekpac 

The start-time kpac is the time when packets sent by node k are successfully received at the target 

region, and the end-time kpac is the time when packets sent by the node k are successfully received 

at target area. 

5.2.2 Packet Delivery Ratio 

The total amount of packets sent among the source node and destination node is referred as 

the packet delivery ratio (PDR). It's used to figure out how much data is lost in packets during 



transmission. While being transmitted from source to destination node, few packets could be missing 

or channelled improperly to alternative nodes; in order to identify this loss, Generally, packet 

delivery ratio is computed and assesses both the correctness and efficiency of adhoc algorithms for 

routing. Higher packet delivery ratio is usually anticipated in any network. This is considered to be 

the best transmission. 

PDR = Total no. of packets received / Total of no.of packets sent 

5.2.3 Energy Consumption 

At the start of the simulation, the node has an initial value, which represents the node's 

energy level at the start of the simulation. In the equation, this is referred to as Initial Energy. The 

term "energy" in the simulation environment refers to the amount of energy in a node at any one 

time, which is provided by battery power or another source. When a node in the simulation 

environment hits 0 energy, it is no longer capable of transmitting or receiving packets, and it 

becomes idle. 

Energy of Nodes = Current_Energy - Initial_Energy 

5.2.4 Network Longevity 

The maximum duration of time, the installed sensors in the simulation can observe the 

phenomena of interest among the nodes. The higher the Network Lifetime range, the better the 

performance. 

Network Longevity = 100 - ΣAi 

ΣAi - Average of energy 

5.2.5 Throughput 

The total number of packets communicated amongst the communication time, or effective 

data delivery within the scheduled time, is the throughput. The transmission value is calculated using 

the standard rate of correctly transmitted packets from source node to destination node. It is 

expressed in bits/bytes per second. 

Average throughput = Total no. of packets successfully transferred-Total no. of packets/Transmitting Time 

5.2.6 Packet Lost 

The discrepancy between the total number of packets transmitted and the total number of packets 

received is known as packet loss. 

Packet Lost = Number of Packets Transmitted – Number of Packets Received 

6. Results and Discussions 

In NS2, the proposed retrievals' experimental outcomes are evaluated and analyzed.  The 

simulation area is 2250 × 2250 meters. Then, 100 nodes are deployed in the given simulation area. 

The suggested algorithm is then applied to the metrics propagation data that has been acquired.  

The suggested and existing methods are measured with the help of the classification methods 

like that Enhanced Memetic Algorithm and Enhanced Data Collection Phase and Enhanced RSA 

Algorithm. These metrics results of the different method are discussed below. 



 
 

 

Table 2 End-to-End Delay    Figure 3 End-to-End Delay 

 

 

 

 

 

 

 

 

 Table 3 Energy Consumption            Figure 4 Energy Consumption 

 

 

 

 

 

 

Table 4 Packet Delivery Ratio          Figure 5 Packet Delivery Ratio 

 

 

Figure 6 Throughput 

Table 5 Throughput 

 

 

 

 

 

Time (ms) 

End-to-End Delay 

Zigbee ZRP 

0 10 10 

20 14.6321 12.5533 

40 16.7812 14.0445 

60 21.4381 19.5593 

80 23.8123 21.6712 

100 27.3541 24.9813 

 

Time (ms) 

Energy Consumption 

Zigbee ZRP 

0 100 100 

20 80.32 77.80 

40 76.43 74.56 

60 74.24 71.72 

80 71.39 68.79 

100 68.34 65.97 

 

Time (ms) 

Packet Delivery Ratio 

Zigbee ZRP 

0 1.57 1.57 

20 1.7625 1.7824 

40 1.8254 1.8640 

60 1.9354 1.9640 

80 1.9952 2.0532 

100 2.1089 2.1358 

 

Time (ms) 

Throughput 

Zigbee ZRP 

0 27 27 

20 43.12 45.19 

40 50.36 53.16 

60 58.53 60.18 

80 63.12 66.78 

100 68.29 70.52 



 

 

 

 

 

 

 

 

Table 6 Network Lifetime     Figure 7 Network Lifetime 

 

 

 

 

 

 

 

Table 7 Packet Lost      Figure 8 Packet Lost 

7. Conclusion 

 To increase network performance in IoT-enabled wireless sensor networks, a memetic 

algorithm with a mobile sink-based data gathering technique is used. For CH selection and cluster 

development, the proposed method contains a unique clustering strategy that combines an algorithm 

called Memetic with Powell's mechanism for conjugate gradient. The overhead of cluster creation 

messages is greatly reduced. The memetic method, contrastingly, employs Powell's mechanism for 

conjugate gradient to determine the ideal amount of cluster heads for reducing data communication 

loss in energy. In the recommended technique, the mobile sink finds the best data collecting channel 

to accumulate data from a large number of CHs, resulting in a significant reduction in end-to-end 

delay. The RSA method encrypts bits and combines them with a public key, reducing decryption 

time and increasing cryptosystem strength. As a result, the chance of cyber threats or network 

dangers is decreased. The proposed method's performance has been assessed using a variety of 

simulation results. The suggested approach surpasses the challenge of throughput, network longevity, 

consumption of energy, packet delivery ratio, loss of packets, and throughput. The suggested 

solution outperforms existing methods in terms of network performance and network security as 

cyber dangers become more sophisticated. 
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Abstract— Insider threat is one of the most stimulating 

security threats in an organization that possesses sensitive 

information. In an organization, detecting malicious insider 

threats is more challenging due to the behavioral changes of 

malicious insider. To avoid the sensitive information leakage 

that causes enormous loss, detecting the malicious insider within 

an organization is necessary. The principal focus of this paper is 

to find the user’s unauthorized activity by analyzing their 

behavior on website i.e., websearch analysis. To find the user's 

unauthorized activity by analyzing each user's behaviour, such 

as the website activity of each individual. The user is classified 

as a genuine user or malicious user based on user’s websearch 

behavior. This paper proposes an insider threat detection 

framework to analyze and detect the malicious insider threat 

within an organization using user’s statistical behavior analysis. 

Keywords—Insider threat detection, behavior analysis, 

Malicious Insider. 

I. INTRODUCTION  

In the rapidly developing world, all business organizations 
and the corporate sector recommend and enhance the business 
by possessing the Internet-as-a-solution. Cloud computing is 
a framework that accomplishes rapid provisioning on-demand 
charge restricted self-service resources to its user over the 
Internet. The migration of an organization to the cloud faces 
some severe threats due to its changing environment. One of 
the most challenging security threats faced by an organization 
is Malicious insider or an authorized individual employee who 
attempts to gain access to confidential information. Recent 
reports show that 53% of organizations and 42% of U.S. 
federal agencies suffer from insider threats every year [1]. 
Insider threat-related activities can be carried out 
intentionally, such as information system sabotage, 
intellectual property theft, and disclosure of classified 
information, as well as unintentionally, such as careless use of 
computing resources [1]. The primary goal of malicious 
insiders is to cause economic and reputation loss by leaking 
sensitive data to the competitive organization. So, it is 
significant to detect the malicious insider threat in an 
organization. one of the way for detecting the malicious 
insider is by analysing the behavior of the user. This paper 
proposes the detection of malicious insider activity using 
behavior analysis. This paper aims to explore the insider data 
using the logging behavior of employees within the 
organization. The entire paper is organized into four sections. 
Section II tabulates the literature study on malicious insider 
detection method. Section III explains the overview of 
proposed methodology. Section IV discusses the obtained 
result. Section V concludes with possible scope for future 
enhancement. 

II. LITERATURE REVIEW 

The primary concern is to analyze the CERT data to detect 
the malicious insiders using logging behavior analysis. Table 
I describes the work done in the field of various Insider Threat 
detection frameworks. 

Table I.  LITERATURE REVIEW 

S.

no  

Author 

Insider 

Threat 

Detection 

Framework 

applied 

Algorithms 

applied 

Observations 

1. Jiang et 

al. (2018) 

User 

Behavior 

Analysis 

XGBoost, 

SVM, 

Random 

Forest (RF) 

User behaviour 

analysis using 

XGBoost outperforms 

other algorithms based 

on F-measure up to 

99.96% to detect the 

malicious activity 

using CERT dataset 

[5] 

2. Eberle 

and 

Holder. 

(2009) 

Graph based 

anomaly 

detection 

GBAD-

MDL, 

GBAD-P 

(probability

) and 

GBAD-

MPS 

(maximum 

partial 

substructur

e) 

Graph-based anomaly 

detection using MDL 

algorithm identifies 

the graph-based 

anomalies such as 

email, phone traffic 

and business process 

to detect the insider 

threat than Probability 

and MPS algorithm [6] 

3. Liu and 

et. (2018) 

Anomaly-

based Insider 

detection 

Deep 

Autoencode

r (AE) 

Deep A.E. detects all 

malicious insider 

activity with a 

reasonable false 

positive rate using US-

CERT data [7] 

4.  Diop and 

et. (2019) 

Ensemble 

Learning 

Behavior 

Anomaly 

Detection 

Framework 

IForest, 

One-Class 

SVM, 

Local 

outlier 

factor 

(LOF), 

Elliptic 

envelope 

(EE), 

artificial 

neural 

network 

(ANN), 

Gaussian 

naive 

Bayes(Gnb)

Ensemble learning 

behavior using Gbc 

algorithm outperforms 

other algorithms with 

(75%-99%) in both 

unsupervised learning 

based testing and 

supervised learning 

based testing. An 

ANN followed this 

with (60%-99%) result 

in both tests [8]. 
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S.

no  

Author 

Insider 

Threat 

Detection 

Framework 

applied 

Algorithms 

applied 

Observations 

, Bagging 

classifiers 

(Bgc), 

random 

forest (RF) 

and 

gradient 

boosting 

(Gbc) 

5. Jiang et 

al. (2019) 

Graph 

Convolutional 

Network  

RF, SVM, 

Logistic 

Regression 

(LR), 

Convolutio

nal Neural 

Network 

(CNN), 

Graph 

Convolutio

nal 

Network 

(GCN) 

GCN performs better 

than other algorithm 

based on accuracy, 

precision and recall to 

detect malicious 

insider and fraud 

activities [9]. 

6. Kim et al. 

(2019) 

User 

Behavior 

Modeling and 

Anomaly 

Detection 

Algorithms 

Gaussian 

density 

estimation, 

Parzen 

window 

density, 

Principal 

component 

User behavior 

modelling and 

anomaly detection 

using Parzen and PCA 

provided a better result 

than other algorithms 

to detect malicious 

insider threats [10]. 

7. Senator 

et al. 

(2013) 

Detecting 

Insider 

Threats in a 

Real 

Corporate 

Database 

IP Thief 

Ambitious 

Leader 

Scenario 

Detector, 

File Events 

Indicator 

Anomaly 

Detection, 

Relational 

Pseudo 

Anomaly 

Detection, 

Repeated 

Impossible 

Discriminat

ion 

Ensemble, 

Grid-based 

Fast 

Anomaly 

Discovery 

given 

Duplicates 

(GFADD) 

The multiple methods 

detect the malicious 

insider threat using 

computer log activity 

in an actual corporate 

database [11].  

8. Lv et al. 

(2018) 

Method based 

on user and 

role behavior 

(MURB) and 

Anomaly 

Detection 

(ADAD) 

Isolation 

Forest 

MURB outperforms 

the ADAD with 80% 

precision and accuracy 

for detection of the 

malicious insider 

threat using CERT 

data [12]. 

9. Gamachc

hi and et. 

(2017) 

Graph and 

anomaly 

detection 

Framework 

Isolation 

Forest 

The combined graph-

based anomaly 

detection framework 

identifies 79% of 

individuals as Genuine 

users and 31% as 

malicious insiders 

with suspicious 

activity [13]. 

S.

no  

Author 

Insider 

Threat 

Detection 

Framework 

applied 

Algorithms 

applied 

Observations 

10. Liu et al. 

(2020) 

Behaviour 

analysis 

Behaviour 

analysis 

The new behaviour 

analysis framework 

named Doc2vec 

simplifies insider 

threat detection based 

on spatial and 

temporal metrics [14]. 

11. Le and 

Heywood

. (2021) 

Anomaly 

Detection for 

Insider 

Threats Using 

Unsupervised 

Ensembles 

AutoEncod

er, Isolation 

Forest, 

Lightweigh

t on-line 

detector of 

anomalies 

(LODA), 

Local 

Outlier 

Factor 

(LOF) 

Unsupervised 

ensemble-based 

anomaly detection 

using Autoencoder 

outperforms the other 

algorithm based on 

voting metrics to 

detect the malicious 

insider threat [15]. 

12.  Legg 

(2015) 

Behavior 

based 

malicious 

insider threat 

detection 

Visual 

Analytics 

Visual analytics is 

recommended to 

detect malicious 

insider threat activity 

based on profiling 

behaviour and selected 

features as a 

mitigation strategy 

[16]. 

The above table shows that the various types of insider 
threat framework utilize different user behavior modelling 
technique to detect the malicious insider. Hence, the behavior 
analysis is implemented to improve the precise detection of a 
malicious insider in an organization. 

III. METHODOLOGY 

The Following Fig.1 shows the proposed malicious insider 
threat framework methodology using behavior analysis to 
detect a malicious insider threat in an organization. 

A. Dataset 

Data can be obtained from the monitoring process of the 
organization, where different log files, such as email and 
weblogs, firewall logs, network traffic captures, and different 
types of user records are common [2]. The publicly available 
dataset gathered from U.S. based Computer Emergency 
Response Team (US-CERT) is used. It consists of information 
regarding both malicious insider and genuine user activity. 
This dataset has been collected from 
https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_
Dataset/12841247/1 [2].. The above dataset contains the 
activity information of individual employees in an 
organization. It comprises the following data input: (i) user 
activity log data such as web URL, email, file, access log, and 
removable device connectivity records. It is dynamic and used 
for the behavior analysis of users. (ii) Structure and 
information of user and organization. It is considered as meta 
information for data analysis. For example, Lightweight 
Directory Access Protocol (LDAP) is considered as metadata 
in CERT data.  
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Fig 1: Methodology Overview 

 

In CERT data, the log information of malicious and non-
malicious activity is given based on the threat scenario 
mentioned below. 

• Scenario 1: An individual in an organization works 
after working hours, carries a removable drive and 
uploads sensitive information to the unauthorized 
website such as wikileaks.org. Tries to resign from the 
organization. 

• Scenario 2: An individual in an organization visits a 
job portal website and explores the employment 
opportunities of a business competitor. An 
individual's anomalous activity increases the use of a 
removable device. Resigns the organization in future. 

•  Scenario 3: Unauthenticated administrator attempts 
to use unauthorized software to collect sensitive 
credentials, utilizes the removable device to get 
sensitive information and tries to access the secure 
system. Later email the critical information and 
resigns from the organization. 

• Scenario 4: Over three months, an individual often 
logs in, searches, and forwards sensitive information 
from other users' computers to personal email 
addresses.  

• Scenario 5: Uploads sensitive information such as 
documents to Dropbox for personal gain. 

Based on the dataset version, the particular scenario is 
used. The proposed methodology uses the dataset version 
r3.1. It satisfies the scenario 1 and scenario 2 from the 
above-mentioned scenarios for further processing.  

B. Data pre-processing 

The primary CERT data contains log details of 516 days, 

where 4000 users generate 135,117,169 log events. The 

events are activity including email-based, login-based, device 

storage-based, HTTP operations, psychometric details, file 

information and daily log details [3]. The abovementioned 

five scenarios apply scenario-1 and scenario-2 related 

malicious insider threat data in this research. Other 

information is ignored. The selected data undertakes three 

pre-processing steps to make the data suitable for insider 

detection. It includes data integration, data transformation 
and data level sampling. 

1) Data Integration: The malicious and non-malicious 

activity information that satisfies the selected 

scenario are gathered from device connectivity, 

login status and website operation for detection of 

malicious insider threat. A simple feature 

concatenation technique is used to integrate the 

selected records. Table II demonstrates the details of 

integrated data. 

Table II.   INTEGRATED DATA 

2) Data Transformation: The integrated data requires 

data transformation to encode the absolute value for 
further processing. The features, namely 'vector', 

'pc', 'user' and 'activity' from integrated data is 

converted into a numerical value. The value of 'date' 

is converted into a number of epochs. Table III 

shows the encoded data. 

Table III.  ENCODED DATA 

3) Data Level Sampling: Jia et al. (2014) had proposed 
the solution at the data level for the class imbalance 

problem is based on sampling methods [4]. It is 

accomplished using the undersampling technique 

such as Near-Miss 2. In Near-Miss 2 algorithm, the 

instance of the majority class was selected if it 

satisfies the average distance for N outermost 

instance of a minority class is minimum. In the pre-

processed dataset, a feature named 'InsiderThreat' is 

selected as the target variable where class 0 is 

majority class non-malicious event and class 1 is 

S.

no 

 

Feature name Explanation 

1. InsiderThreat Malicious activity or not 

2. Vector origin of data (HTTP/logon/device) 

3. date Date 

4. User The user id of an employee 

5. 
Pc Unique identification for each computer 

6. Activity Actual activity of an employee in the pc 

S.

no 

 

Feature Before Encoding 

 

After Encoding 

1. InsiderThreat Numerical Numerical 

2. Vector Categorical Numerical  

3. 
date Timestamp Number of 

epochs 

4. User Categorical Numerical 

5. Pc Categorical Numerical 

6. Activity Categorical Numerical 
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minority class malicious event. After resampling, 

the majority class instance 0 is restructured and 

equals the minority class instance 1. Table IV shows 

the sampled data. 

Table IV.  SAMPLED DATA 

 

C. Logging Behavioral Analysis 

The behavior of each individual in an organization needs 
to be analyzed to detect the malicious insider threat. Logging 
behavior analysis using pre-processed data is used to get more 
insight into the activity of each individual in an organization. 
Based on the selected scenario, the visited website of each 
individual is analyzed to identify the malicious user behavior. 
It is accomplished by analyzing website activity to detect 
malicious activity. Website activity behavior is an efficient 
way to collect sensitive evidence from the organization. The 
website behavior comprises visited website URLs for each 
individual. Based on the selected scenario, unauthorized 
access such as www.wikileaks.org and job-related websites is 
considered an unauthorized malicious activity. Others are 
considered non-malicious activity. It further conducts an in-
depth analysis of user website behavior to detect malicious 
activity. 

IV. RESULTS AND DISCUSSIONS 

 The following Fig. 2 demonstrates the activity count of 
genuine users and malicious users using pre-processed data. 
From the Fig.2, it is observed that the activity of the genuine 
user (0) is comparatively less than 10 activities per month. In 
comparison, the total activity count of the malicious user (1) 
is more than 70 activities per month.  Hence, the activity of 
the malicious user is increasingly high than the average 
genuine user, and it is required to detect the user who 
possesses the malicious activity. The users who visit 
unauthorized websites are categorized as "Malicious" and 
others as "Non-Malicious". It is required to find the total 
number of unique activities of each individual in a particular 
personal computer (pc) for both malicious and genuine users. 

Fig 2: Activity count of Genuine user and malicious user 

 The following Fig. 3 visualize the total number of activity 
counts for both malicious and genuine users. The non-
malicious insider may possess the malicious activity. So, 
categorize the user based on malicious activity to foresee the 
user activity in Fig.4  

Fig 3: Total number of activity count for each user. 

It pinpoints user's activity based on the frequency of various 
visited URLs using a particular device. Fig.4 shows that user 
162 is an insider who visits the job-related website, namely, 
http://lockheedmartinjobs.com for 13 times and frequently 
uses the removable device for connection and disconnection. 
This is categorized as a malicious insider that satisfies 
scenario-2 based rule. User 221 is an insider who visits the 
unauthorized website, namely http://wikileaks.org for 2 times 
and is categorized as a malicious insider based on scenario-1 
based rule.  

Fig. 4. Total number of activity count for each user based on category. 

S.n

o 

Training 

set 
Before Sampling 

After Sampling 

1. 

Non-

Malicious  

Majority 

class 

instance 

(0, 39732) 

 

 

(0, 268) 

2. 

Malicious  

Minority 

class 

instance 

 

 

(1, 268) 

 

 

(1, 268) 

This work is supported by the Centre for Cyber Intelligence (CCI), 

DST-CURIE-AI-Phase II Project, Avinashilingam Institute for Home 

Science and Higher Education for Women. Coimbatore. Tamil nadu, India. 

 

 

 

 



 

 

Information Classification: General 

 The following Fig.5 explains the personal computer used by 
a malicious user. i.e., user 162 uses the pc, namely 45, to 
perform the malicious activity. User 221 uses the pc, namely 
403, to perform the malicious activity. By converting the 
numerical value into categorical value, the user id is retrieved. 
Hence, user CCH0959 and CSF0929 is considered a malicious 
insider who visits the unauthorized website and performs the 
malicious activity. 

Fig. 5. Personal computer used by Malicious user. 

Table V demonstrates the company profile of malicious 
insiders from LDAP. It shows that the user CCH0959 is 
Cedric Cyrus Harrison, an Industrial Engineer from the 
Industrial Engineering department who is considered a 
malicious insider based on scenario-2. The user CSF0929 is 
Chaney Sean Fuentes, a Production Line Worker from 
Assembly Department considered a malicious insider based 
on scenario-1. 

Table V.  Information of Malicious Insider 

User id 

Name Email Roles Depart

ment 

Supervis

or 

CCH095

9 

Cedric 

Cyrus 

Harrison 

Cedric.

Cyrus.H

arrison

@dtaa.c

om 

Industrial 

Engineer 

1– 

Industria

l 

Engineer

ing 

Desiree 

Claudia 

Booth 

CSF0929 Chaney 

Sean 

Fuentes 

Chaney.

Sean.Fu

entes@

dtaa.co

m 

Productio-

n Line 

Worker 

3- 

Assembl

y 

Theodor

e Upton 

Barry 

 

V. CONCLUSION AND FUTURE ENHANCEMENT 

In this proposed research paper, the logging behavior analysis 
is implemented using pre-processed insider threat data to 
detect the malicious insider threat in an organization. The user 
who visits the unauthorized data leak websites and job-related 
websites are considered malicious insiders based on scenario-
1 and scenario-2. The predicted malicious insider who 
possesses malicious activity is correctly detected. It pinpoints 
the basic information of malicious insiders from LDAP to 
further mitigate such activity that could happen in the cloud 

environment. It is highly beneficial in real-time insider threat 
detection. In future, the graph-based behavior analysis using 
deep learning can be proposed to detect the malicious insider 
threat. 
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Abstract – Due to the rapid growth of android 

applications and mobile users in this technological era, 

there is a large increasing cyber attacks through mobile 

phones. During Pandemic period, mobile malware attacks 

are one of the top most cyber attacks observed in android 

mobile users to steal the user personal credentials by 

intrusion of adware, spyware, banking malware, SMS 

malware, riskware, viruses and so on. Machine learning 

methods are very useful and amicable to detect mobile 

malwares. Automation of the mobile malware detection is 

the need of the hour and it is imperative to identify the 

most suitable machine learning techniques. This paper 

investigates the evaluation of supervised machine 

learning algorithms that are applied to detect and classify 

the mobile malwares. A systematic method of evaluation 

of supervised machine learning model to detect the 

malware data points and to classify them into binary 

classification as malware or benign is essential. The 

purpose of evaluating the supervised machine learning 

algorithms is to identify the best supervised machine 

learning model for mobile malware detection with high 

efficacy rate.  All important performance measures are 

applied and the entire experiments are conducted using 

benchmark dataset. Nine Supervised Machine Learning 

methods are experimented and the results are discussed.  

Keywords – Machine Learning, Malware Classification, 

Mobile Malware, Supervised Learning, Python.  

I.    INTRODUCTION 

A Malware or Malicious Software is one of the most 

common types of cyber attack which was highly pre-

dominant during the pandemic by the means of 

intruding as a malicious code to take over the system 

control by monitoring all the user activities and steal 

the user personal credentials without the knowledge 

of the user [2] [3] [4].  

Mobile malware are the important threats and android 

based mobile malware are very significant today and 

they compromise user’s credentials through 

unauthorized access [2] [3] [4]. The aim of the paper 

is to identify efficient supervised machine learning 

algorithms to detect mobile malwares. The applied 

algorithms classify the dataset into malware data and 

benign data using a systematic approach which is 

vital towards automation of mobile malware 

detection.  

Automation is the way of handling the problems 

without human intervention by incorporating AI 

methods to provide solution to reduce the processing 

time [9]. The proposed approach experiments nine 

different supervised machine learning models, 

evaluate the models and recommends the most 

efficient supervised ML model for accurate malware 

detection. The evaluation of the supervised machine 

learning models is done in terms of performance 
metrics such as accuracy, precision, recall, F1 score, 

R2 score, TPR, FPR and ROC [5] [7] [8].  

The major contribution of this paper is to devise a 

systematic methodology to test the supervised 

machine learning model suitable for android based 

mobile malware detection. This paper is divided into 

different phases of Machine Learning work flow. The 
first step is to acquire the dataset and analyze the data 

to fit for the further development process. The 

malware dataset taken for study contains 1,00,000 

records with 35 feature attributes. In the second step, 

data pre-processing methods are applied to check 

whether the data contains any null values or 

irrelevant values, which helps to remove the 

unwanted data values then split the data into training 

and test data set as in the ratio of 70:30. Third step, 

applies the feature selection methods to find out the 

important features of the dataset. Selecting the 

significant features from the dataset will help to 
improve the data processing time and provides better 

accuracy of the ML algorithms. The methodology 

uses three different feature selection algorithms 

namely, (i) Univariate Selection (ii) Feature 
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Importance and (iii) Recursive Feature Elimination.  

By applying the above mentioned feature selection 

methods, out of 35 features top 10 important features 

are selected for effective malware classification. 

Fourth step, applies supervised machine learning 
algorithms to identify and classify the data into 

malware/benign [1] [2] [6] [9] [10]. Following 

supervised machine learning algorithms are evaluated 

in this study. 

i. Decision tree 

ii. Random forest 

iii. K – Nearest Neighbors (KNN) 

iv. Support Vector Machine (SVM) 
v. Naïve Bayes 

vi. AdaBoost 

vii. Neural Network (MLP) 

viii. Logistic Regression 

ix. Linear Discriminant Analysis 

Fifth step, evaluate the performance of the supervised 

machine learning models using various evaluative 
metrics to provide the best model for mobile malware  

detection [1] [4]. 

II. PROBLEM DEFINITION 

For automation of mobile malware detection, it is 

necessary to develop a systematic framework. This 

study applies supervised machine learning algorithms 

to detect and classify the mobile malware. Nine 

different supervised machine learning algorithms are 

implemented and evaluated for performance and the 

most suitable supervised machine learning models 

are identified based on their performance.  

III. METHODOLOGY 

A study has been conducted for dynamic behavior 

based android mobile malware classification using 

supervised machine learning techniques [2]. The 

entire methodology is divided into five different 

phases. The first phase of the work is to acquire the 

appropriate malware dataset for the problem. The 

second phase involves data pre-processing to 

investigate the quality of the data by removing the 

duplicate records, noisy data and conversion of null 

values into well defined format. The third phase is to 

apply Feature Selection methods to find out the best 
features of the dataset that strives to detect or classify 

the malware data points with high efficacy rate with 

less processing time. The fourth phase is building a 

nine different Supervised Machine Learning Models 

which automatically detects and classifies the 

malware data points based on the training data [1] [2] 

[6] [9] [10]. The fifth phase is to make a comparative 

analysis between the nine different Supervised 

Machine Learning models developed in the previous 

phase by evaluating them using performance metrics 

to suggest the best classifier model that can detect 

and classify the malware data points accurately [1] 
[4]. Figure 1 illustrates the step – by – step 

methodology followed in this paper. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed Workflow Methodology 

The above illustrated methodology is implemented 

using Python programming in Jupyter Notebook 

environment. 

A. About the Dataset 

Understanding of the dataset is very important for the 

accurate prediction and classification. In this work, 

the benchmark dataset is taken from the kaggle 

community. The dataset consists of 1,00,000 records 

and 35 feature attributes. The identification of 

malware and classification as malware or benign 

depends on the behavioral features. Table I shows the 
description of the 35 android kernel attributes 

involved in the dataset. 

 

 

Acquire and Import the Malware Dataset 

Apply Data Pre-Processing 

Apply Feature Selection Methods 

(Univariate Feature Selection, Feature 

Importance based Feature Selection, Recursive 

Feature Elimination) 

 

 

 Apply Supervised Machine Learning 

Algorithms 

(Decision Tree, Random Forest, KNN, SVM, 

Naïve Bayes, AdaBoost, Neural Network 

(MLP), Logistic Regression, Linear 

Discriminant Analysis) 

 

Evaluate and Compare the Supervised 

Machine Learning Algorithms 

Recommend the Most Suitable Supervised 

Machine Learning Methods 



 

TABLE I. Mobile Malware Dataset – Attribute Description 

S. No Malware Data 

Attributes 

Description 

1 hash It is a common 

method to uniquely 

identify the 

malware, which acts 

as a fingerprint for 

malware detection. 

This data contains 

100 unique hash 

values. (i.e. unique 

apk app names) 

2 millisecond It denotes the time in 

millisecond ranges 
from 0 to 999 

milliseconds. 

3 state It denotes the flag of 

unrunable or 

runnable or stopped 

tasks as ‘0’. 

4 usage_counter It shows the 

reference count for 

task_struct of 

process as ‘0’.  

5 prio It denotes the system 

task structure with 

normal priority 

value from 0 to 99 
and real-time from 

100 to 140 as 

‘3.07b’. 

6 static_prio It holds the 

processes’ initial 

priority value 

ranging from 14.0k 

to 31.9k. 

7 normal_prio It denotes the 

priority without 

taking RT-

inheritance into 

account as ‘0’. 

8 policy It denotes the 
scheduling policy 

used for this process 

as ‘0’. 

9 vm_pgoff It is the page offset 

of the area in the 

file. This is the file 

position of the first 

page mapped in this 

area when a file or 

device is mapped. It 

is the first page of 

the file or device 

marked as ‘0' in the 

vm_area. 

10 vm_truncate_count It denotes the 

vm_areatruncate_co

unt values ranging 

from 9695 to 27.2k. 

11 task_size It represents the 

current task size as 
‘0’. 

12 cached_hole_size It represents the size 

of the free address 

space hole as ‘0’. 

13 free_area_cache It represents the first 

address space hole 

ranging from 0 to 

515. 

14 mm_users It represents the 

address space of 

users ranging from 

612 to 995. 

15 map_count It denotes the 

number of mapping 

areas ranging from 
2588 to 28.2k. 

16 hiwater_rss It represents the high 

watermark of 

resident set and sets 

the peak of resident 

set size as ‘0’. 

17 total_vm It denotes the total 

number of memory 

pages ranging from 

4 to 2810. 

18 shared_vm It denotes the 

number of shared 

pages ranging from 

112 to 120. 

19 exec_vm It represents the 

number of 
executable memory 

pages ranging from 

92 to 196. 

20 reserved_vm It represents the 

number of reserved 

memory pages 

ranging from 29 to 

755. 

21 nr_ptes It represents the 

number of page 

table entries as ‘0’. 

22 end_data It represents the end 

address of data 

ranging from 112 to 
120. 

23 last_interval It denotes the last 



 

interval time before 

thrashing ranging 

from 0 to 9526. 

24 nvcsw It denotes the 

number of voluntary 

context switches 

ranging from 338k 
to 385k. 

25 nivcsw It denotes the 

number of in 

voluntary context 

switches ranging 

from 0 to 365. 

26 min_flt It represents the 

minor page faults 

ranging from 0 to 

256. 

27 maj_flt It represents the 

major page faults 

from 112 to 120. 

28 fs_excl_counter It holds the file 

system exclusive 
counter value 

ranging from 0 to 

18. 

29 lock It denotes the file 

lock as ‘3.20b’ 

30 utime It represents the 

cumulative time 

spends on user code 

ranging from 372k 

to 422k. (i.e. user 

time) 

31 stime It represents the 

cumulative time 

spent executing 

system code ranging 
from 3 to 7. (i.e. 

system time) 

32 gtime It denotes the group 

time, cumulative 

resource counter 

ranging from 0 to 

15. (i.e. guest time) 

33 cgtime It denotes the 

cumulative group 

time, cumulative 

resource counter as 

‘0’. 

34 signal_nvcsw It denotes the 

cumulative resource 
counter as ‘0’. 

35 classification It contains binary 

classification as 

malware or benign. 

B. Data Acquisition and Data Importing 

The first and foremost step in developing a 

Supervised Machine Learning Model is to acquire the 

appropriate dataset and import them into the working 

environment. Python is a platform excellence to 
support enormous Machine Learning algorithms and 

it is the suitable environment experiments 

methodology of machine learning model. In this step, 

the acquired malware dataset is converted into the 

CSV file format and imported into the Python Jupyter 

notebook environment. 

 

C. Data Pre-processing 

After importing the dataset, the second consequent 

step to be performed is data pre-processing [4]. Data 

pre-processing is the significant step to derive the 

best results from the classifier models. The data pre-
processing is carried out by verifying that the taken 

dataset contains any null values, un-defined values or 

irrelevant values which may deviate the results and 

degrade the performance of the models. The null 

values are replaced into “zero (0)” or “unknown” 

data values to overcome the processing issue. Label 

encoding method is applied to convert the attributes 

into the integer data type format to develop suitable 

machine learning model. For developing ML models 

the entire dataset is divided into training set and 

testing set in the ratio of 70% for training and 30% 
for testing [1] [2]. After this step, the dataset is now 

available in a well defined format for further 

processing. 

D. Feature Selection 

 

Feature selection is an important step of Feature 

Engineering in Machine Learning process [6] [7] [8] 

[10]. Feature Engineering is the third step, in the 
Machine Learning process which extracts the features 

from the raw dataset to provide labels for appropriate 

classification. Following feature selection methods 

are used to choose the top 10 important features 

precisely out of 35 attributes of given dataset.  

i. Univariate Feature Selection 

The univariate feature selection approach is a 

statistical technique for identifying relevant features 

having a strong association to the target variable. The 

scikit-learn library in Python includes a function 

called SelectKBestclass. The SelectKBest class is 
used in this study to choose the top 10 features out of 

35 features in a mobile malware dataset using the chi-

square statistical test. . It calculates the Chi-square 

coefficient for each non-negative feature in the target 



 

class and chooses the desired top 10 features with the 

highest Chi-square scores.  

Chi – Square Formula: 

 

 

ii. Feature Importance Based Feature 

Selection 

The feature importance property of the ensemble 

model is used by the python tool feature importance to 

pick important features of the dataset. Every property 

of the dataset is given a score. Greater the score, 

higher the significance or relevance feature towards 

target variable. Using the python sklearn ensemble 

model with the Extra tree classifier method, the 

system calculates the top 10 features and displays the 

scores of all the calculated features.  

iii. Recursive Feature Elimination (RFE) 

Recursively deleting characteristics and then 

developing a classifier model with the remaining 

attributes is how the recursive feature elimination is 

done. The model selects the top 10 features of the 

data by recursively eliminating the smallest features 
using the python sklearn feature selection library, 

RFE method, and the logistic regression classifier 

algorithm, and the selected features are discernible as 

True in the support array, and the features are ranked 

using the choice “1” in the ranking array. 

After incorporating three different feature selection 

methods, the top 10 features are selected based on the 

highest occurring nature of attributes from the three 
different feature selection methods. This selection 

helps in malware data point selection in optimum 

time. Figure 2 indicates the top 10 selected features 

out of the 35 features shown in Table I. The Top 10 

Selected Features are listed below. 

• hash 

• state 

• static_prio 

• vm_truncate_count 

• map_count 

• total_vm 

• reserved_vm 

• nvcsw 

• nivcsw 

• utime 

 

Fig. 2. The top 10 selected features based on the three different 

feature selection methods 

E. Supervised Machine Learning Models 

The fourth phase is Model building. After selecting 

the top 10 best features out of 35 attributes in the 

dataset, now the data is ready for developing the 

model based on Supervised Machine Learning 

algorithms for the function of classification of mobile 

malware as malware or benign. Following nine 

supervised machine learning algorithms are 

implemented to develop a mobile malware 

classification model [1] [2] [6] [9] [10]. 

i. Decision Tree 

ii. Random Forest 

iii. KNN 

iv. SVM 

v. Naïve Bayes 

vi. AdaBoost 

vii. Neural Network (MLP) 

viii. Logistic Regression 

ix. Linear Discriminant Analysis 

The above specified supervised learning algorithms 
are developed using python Scikit learn library. The 

general steps involved in developing the above 

mentioned supervised machine learning models for 

Mobile Malware classification is explained below: 

Step 1: Import the necessary Scitkit learn Supervised 

Machine Learning algorithm library. 

Step 2: Fit the Supervised Machine Learning model 

to the given training set. 

Step 3: Based on the training data, forecast the test 

result. 



 

Step 4: Then, perform test data predictions and 

calculate accuracy. 

Step 5: Finally, the Supervised Machine Learning 

Classifier model is ready. 

Each Supervised Machine Learning algorithm detects 
and classifies the malware data points depending 

upon their own mechanism of calculating the 

attributes thresholds. The distance calculation 

measures vary for each algorithm and the weights for 

the model parameters are determined for final 

classification. Table II describes the criteria used to 

detect and classify the mobile malware data points. 

TABLE II. Supervised Machine Learning Algorithm’s 

Classification Criteria 

Algorithm Name Classification Criteria 

Decision Tree Attribute Selection Measure 

(Entropy or Gini Index) 

Random Forest Attribute Selection Measure 

(Entropy or Gini Index) 

KNN Euclidian Distance Measure 

SVM Hyperplane Dimensionality 

Naïve Bayes Bayes Theorem 

AdaBoost Ensemble Learning  

MLP Back Propagation  

Logistic Regression Sigmoid Function 

LDA Collinearity / Class Variance 

F. Performance Evaluation Metrics 

Following performance metrics are used to evaluate 

the nine Supervised Machine Learning models [1] 

[4]:  

• Accuracy 

• Precision 

• Recall 

• F1 Score 

• R2 Score 

• Confusion matrix 

The error rates of each Supervised Machine Learning 

models are also calculated based on the following 

[9]: 

• Mean Absolute Error (MAE) 

• Mean Squared Error (MSE)  

• Root Mean Squared Error (RMSE) 

The results are also visualized in Receiver Operating 

Characteristic (ROC) curve form. 

Accuracy: It is defined as the percentage of accurate 

predictions of the test data. 

 

True Positives (TP) – These are the accurately 

predicted positive values, indicating that the actual 

and predicted class values are both True. 

True Negatives (TN) - These are the precisely 

predicted negative values, indicating that the actual 

and predicted class values are both False. 

False Positives (FP) – When the predicted class is 

True, but the actual class is False. 

False Negatives (FN) – When the predicted class is 

False, but the actual class is True. 

Precision: It is the ratio of successfully predicted 

positive observations to total expected positive 

observations. It refers to the classifier's ability to 

avoid mislabeling a negative sample as positive. 

Precision = TP/TP+FP 

Recall: It is the proportion of accurately predicted 

positive observations to all observations in the actual 

class of observations. It refers to the capacity of 

classifier on its ability to locate all positive samples. 

Recall = TP/TP+FN 

F1 Score: It is the weighted average, or Harmonic 

Mean, of Precision and Recall. As a result, this score 
takes into account both false positives and false 

negatives.  

F1 Score = 2*(Recall * Precision) / (Recall + Precision) 

Or 

F1 = 2TP / 2TP + FP + FN 

R2 Score: The coefficient of determination 

(sometimes referred to as R-Squared) is a statistical 



 

metric used in regression models to determine how 

much variance in the dependent variable can be 

explained by the independent variable. 

𝑹𝟐 = 𝟏 −  
∑(𝒚𝒊 − �̂�)𝟐

∑(𝒚𝒊 − �̅�)𝟐
 

Where, �̂� is the predicted value of y and �̅� is the 

mean value of y. 

Confusion Matrix: It is a matrix that is used to 

evaluate classification model’s performance for a 

certain set of test data. Only if the true values for test 
data are known, it can be determined. Since it 

displays the errors in the model's performance as a 

matrix, it is also known as an error matrix. Figure 3 

shows the confusion matrix. 

 
Fig. 3. Confusion Matrix 

Mean Absolute Error (MAE) (L1 Loss): It is the 

average of the absolute difference in the dataset's 

actual and forecasted values. It computes the average 

of the residuals in the dataset. 

 

Mean Squared Error (MSE) (Quadratic Loss or 

L2 Loss): It is the average of the squared difference 

between the original and forecasted values. It 

calculates the residuals' variance. 

 

Root Mean Squared Error (RMSE): It is the 

standard deviation of the errors that occur when 
making a prediction on a dataset. This is the same as 

MSE (Mean Squared Error). Only the root of the 

number is taken into account when determining the 

model's accuracy. The square root of Mean Squared 

Error is termed as RMSE. It calculates the residuals' 

standard deviation. 

 

Where, �̂� is predicted value of y and �̅� is the 
mean value of y. 

Receiver Operating Characteristic (ROC) Curve: 

It is a graph that shows how effectively a 

classification algorithm works across all the 

conceivable thresholds. The graph shows both the 

true positive rate (Y-axis) and the false positive rate 

(X-axis). As a function of the model's positive 

classification threshold, it plots the true positive rate 

(TPR) against the false positive rate (FPR). 

AUC (Area under the Curve): It is a statistic used 

for calculating the classification model's overall 

performance based on the area under the ROC curve. 

G. Comparative Analysis 

Based on the above given evaluation measures, a 

comparative analysis is made between the nine 

different supervised machine learning models to 

discover the best classifier model with high efficacy 

rate. Figure 4 shows the overall accuracy comparison 
of all supervised machine learning model. Table III 

and Table IV describes the comparative analysis of 

nine supervised machine learning algorithms based on 

the evaluation metrics such as accuracy, precision, 

recall, F1 score, R2 score and the error rate evaluation 

based on Mean Absolute Error (MAE), Mean Squared 

Error (MSE) and Root Mean Squared Error (RMSE). 

 

 

 

 

 

 

 



 

 

Fig. 4. Overall Accuracy Comparison of all Supervised ML Model 

TABLE III. Comparison of Precision, Recall, F1, R2 Score between Supervised Machine Learning Algorithms 

S. No Supervised Machine 

Learning Algorithms 

Accuracy Score Precision Score Recall Score F1 Score R2 Score 

1 Decision Tree Classifier 1.0 1.0 1.0 1.0 1.0 

2 Random Forest Classifier 1.0 1.0 1.0 1.0 1.0 

3 K – Nearest Neighbor 

Classifier 

0.996 0.996 0.996 0.996 0.986 

4 Support Vector Machine 

Classifier 

0.999 1.0 0.999 0.999 0.999 

5 Naïve Bayes Classifier 0.909 0.895 0.927 0.911 0.638 

6 AdaBoost Classifier 1.0 1.0 1.0 1.0 1.0 

7 Neural Network (MLP) 

Classifier 

1.0 1.0 1.0 1.0 1.0 

8 Logistic Regression 

Classifier 

1.0 1.0 1.0 1.0 1.0 

9 Linear Discriminant 

Analysis Classifier 

0.997 0.999 0.995 0.997 0.990 

TABLE IV. Comparison of MAE, MSE, RMSE between Supervised Machine Learning Algorithms 

S. No Supervised Machine Learning Algorithms MAE MSE RMSR 

1 Decision Tree Classifier 0.0 0.0 0.0 

2 Random Forest Classifier 0.0 0.0 0.0 

3 K -  Nearest Neighbor Classifier 0.003 0.003 0.057 

4 Support Vector Machine Classifier 6.666 6.666 0.008 

5 Naïve Bayes Classifier 0.0904 0.0904 0.3007 

6 AdaBoost Classifier 0.0 0.0 0.0 

7 Neural Network (MLP) Classifier 0.0 0.0 0.0 

8 Logistic Regression Classifier 0.0 0.0 0.0 

9 Linear Discriminant Analysis Classifier 0.0024 0.0024 0.0496 



 

IV. RESULTS AND DISCUSSION 

From the above comparative analysis (Table III and 

Table IV) made between nine different supervised 

machine learning algorithms it is evident that the 

Decision Tree, Random Forest, AdaBoost, Neural 

Network based Multi Layer Perceptron (MLP), 

Logistic Regression accurately detect and classify the 

malware data points with 100% accuracy at 0% error 

rate for Mobile Malware binary classification. 

Moreover, KNN algorithm classifies with 99.7%, 

SVM algorithm classifies with 99.9%, Naïve Bayes 

algorithm classifies with 90.9%, LDA algorithm 

classifies with 99.7% accuracy. When compared with 
Decision tree, Random forest, KNN, SVM, 

AdaBoost, MLP, Logistic Regression and LDA 

supervised model classifiers; the Naïve Bayes 

classifier model performs little low in accuracy for 

the given dataset.  

Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9 

shows the results of comparative analysis between 
the nine supervised machine learning models 

evaluated based on the performance metrics such as 

accuracy, train accuracy, test accuracy, precision, 

recall, F1 score, R2 score, confusion matrix, TPR, 

FPR and ROC curve. 

 

Fig. 5. Train Accuracy Comparison of all Supervised ML Models 

 

Fig. 6. Test Accuracy Comparison of all Supervised ML Models 

 

 

 

Fig. 7. Precision Comparison of all Supervised ML Models 

 

 
 

Fig. 8. Recall Comparison of all Supervised ML Models 

 

 

Fig. 9. Overall Comparative Representation of Supervised ML 

Algorithms in ROC Curve 

V. CONCLUSION 

Android based mobile malware are of serious threats 

to the user community due to challenges with user 

data compromise. Therefore, automatic detection and 

dynamic analysis of mobile malware are very crucial 

to develop. The implementation of various 

Supervised Machine Learning Models using Mobile 

Malware Dataset, it is observed that, out of nine 

Supervised Machine Learning algorithms, the Naïve 

Bayes Classifier Model performs little low when 

compared with other different eight given Supervised 

Machine Learning algorithms for the given dataset. 



 

This paper clearly describes the step-by-step 

implementation procedure to develop an effective 

Machine Learning Model using a Mobile Malware 

Dataset in an elaborative way. Moreover, all 

Supervised Machine Learning algorithms support 
Malware classification with higher efficacy rate. 

Thus, this study will be helpful for the learners to 

understand and implement Supervised Machine 

Learning algorithms in a systematic way by 

incorporating mobile malware datasets to arrive at the 

best results. 
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